
Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)
Saber cómo introducir los datos de la Web en un EA no es tan obvio, o mejor dicho, no es tan simple que puede hacerse sin conocer y entender realmente todas las características que están presentes en MetaTrader 5.

Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)
Cómo acceder a los datos en la web dentro de MetaTrader 5. En la web tenemos varios sitios y lugares en los que una gran y vasta cantidad de información está disponible y accesible para aquellos que saben dónde buscar y cómo utilizar mejor esta información.

Aprendizaje automático y Data Science (Parte 02): Regresión logística
La clasificación de los datos es un punto crucial para los tráders algorítmicos y los programadores. En este artículo, nos centraremos en uno de los algoritmos logísticos de clasificación que podría ayudarnos a identificar los síes o los noes, las subidas y bajadas, las compras y las ventas.

Aprendizaje automático y Data Science (Parte 01): Regresión lineal
Es hora de que los tráders entrenemos nuestros sistemas y aprendamos a tomar nuestras propias decisiones en función de lo que muestren los números. En este proceso, evitaremos los métodos visuales o intuitivos que usa todo el mundo. Marcharemos perpendicularmente a la dirección general.

Consejos de un programador profesional (Parte III): Registro Conexión al sistema de recopilación y análisis de logs Seq
Implementación de la clase Logger para unificar (estructurar) los mensajes mostrados en el diario del experto. Conexión al sistema de recopilación y análisis de logs Seq. Supervisión de los mensajes en el modo online.

Analizando por qué fallan los asesores expertos
En este artículo, ofrecemos un análisis de los datos de divisas para entender mejor por qué los asesores expertos pueden tener un buen rendimiento en algunos intervalos y un mal rendimiento en otros.

Matemáticas en el trading: Ratios de Sharpe y Sortino
El rendimiento es la métrica más obvia usada por los inversores y los tráders principiantes a la hora de analizar la efectividad del comercio. Los tráders profesionales utilizan herramientas más fiables para el análisis de estrategias, como los ratios de Sharpe y Sortino.

Valoración visual de los resultados de optimización
La conversación en este artículo se centrará en cómo crear gráficos para todas las pasadas de optimización y elegir el criterio personalizado óptimo. Y también sobre cómo, teniendo un conocimiento mínimo de MQL5 y un gran ánimo de trabajar, usando los artículos del sitio y los comentarios en el foro, podremos escribir lo que queramos.

¿Cómo elegir correctamente un asesor en el Mercado?
En este artículo, analiceremos los puntos a los que debemos prestar atención en primer lugar a la hora de comprar un asesor. También buscaremos formas de aumentar los beneficios y, lo que es más importante, de gastar el dinero de forma inteligente y seguir ganando con ello. Además, tras finalizar la lectura, comprenderá que puede ganar dinero incluso con productos simples y gratuitos.

Combinatoria y teoría de la probabilidad en el trading (Parte V): Análisis de curvas
En este artículo, hemos decidido investigar un poco sobre la conversión de varios estados en estados dobles. El objetivo principal es el propio análisis y las conclusiones útiles que extraigamos, que nos pueden ayudar en el desarrollo posterior de algoritmos comerciales escalables basados en la teoría de la probabilidad. Obviamente, no hemos podido evitar el uso de matemáticas, pero, teniendo en cuenta la experiencia de artículos anteriores, hemos observado que la información general resulta mucho más útil que los detalles en sí.


Combinatoria y teoría de la probabilidad en el trading (Parte IV): Lógica de Bernoulli
En el presente artículo, hemos decidido hablar del conocido esquema de Bernoulli, y también mostrar cómo podemos utilizarlo al describir conjuntos de datos relacionados con el trading, para su posterior uso en la futura creación de un sistema comercial autoadaptable. Asimismo, buscaremos un algoritmo más general (la fórmula de Bernoulli constituye un caso especial dentro de este tipo), y encontraremos una aplicación para él.

Programamos una red neuronal profunda desde cero usando el lenguaje MQL
El objetivo de este artículo es enseñar al lector cómo crear una red neuronal profunda desde cero utilizando el lenguaje MQL4/5.

Perceptrón Multicapa y Algoritmo de Retropropagación (Parte II): Implementación en Python e integración en MQL5
Se ha puesto a disposición un paquete de Python con el propósito de desarrollar la integración en MQL, lo que abre las puertas a numerosas posibilidades como la exploración de datos, la creación y el uso de modelos de aprendizaje automático. Esta integración nativa de MQL5 en Python abre las puertas a muchas posibilidades de uso que nos permiten construir desde una simple regresión lineal a un modelo de aprendizaje profundo. Entendamos cómo instalar y preparar el entorno de desarrollo y usar algunas de las bibliotecas de aprendizaje automático.

Análisis de spread Bid/Ask en MetaTrader 5
Un indicador para informar de los niveles de spread Bid/Ask de sus brókeres. Ahora podremos usar los datos de ticks de MT5 para analizar cuál ha sido realmente el promedio histórico real del spread Bid/Ask reciente. No deberíamos necesitar mirar el spread actual, porque está disponible si mostramos las líneas de precio Bid/Ask.


Combinatoria y teoría de la probabilidad en el trading (Parte III): Primer modelo matemático
Como continuación lógica del tema, hoy analizaremos la necesidad de desarrollar modelos matemáticos multifuncionales para las tareas comerciales. En este sentido, el presente artículo describirá el proceso completo de desarrollo del primer modelo matemático para describir fractales desde cero. Dicho modelo debería convertirse en un componente importante, además de ser multifuncional y universal, incluso a la hora de sentar las bases teóricas para el futuro desarrollo de la rama.


Combinatoria y teoría de la probabilidad en el trading (Parte II): Fractal universal
En el presente artículo, continuaremos estudiando los fractales, prestando especial atención a la generalización de todo el material. En concreto, intentaremos hacer el material más compacto y comprensible, para poder usarlo de forma práctica en el trading.


Cómo ser un mejor programador (parte 02): 5 cosas que evitar para convertirse en un programador exitoso de MQL5
Este es un artículo de lectura obligada para cualquiera que desee mejorar su carrera como programador. Esta serie de artículos tiene como objetivo convertirlo a usted en el mejor programador posible, sin importar la experiencia que tenga. Las ideas analizadas funcionan tanto para principiantes como para profesionales de la programación en MQL5.


Patrones con ejemplos (Parte I): Pico múltiple
El artículo inicia un ciclo de análisis de patrones de reversión en el marco del trading algorítmico. Comenzaremos la idea examinando la primera y más interesante familia entre estos patrones, originada a partir de los patrones Double Top y Double Bottom.

Análisis de clústeres (Parte I): Usando la inclinación de las líneas de indicador
El análisis de clústeres es uno de los elementos más importantes de la inteligencia artificial. En este artículo, trataremos de aplicar el análisis de inclinación del clúster del indicador para obtener valores de umbral que nos ayuden a determinar la naturaleza plana o de tendencia del mercado.

Combinatoria y teoría de la probabilidad en el trading (Parte I): Fundamentos
En esta serie de artículos, buscaremos una aplicación práctica de la teoría de probabilidad para describir el proceso del trading y la fijación de los precios. En el primer artículo, nos familiarizaremos con los conceptos básicos de la combinatoria y la teoría de probabilidad, y analizaremos el primer ejemplo de la aplicación de fractales dentro de la teoría de probabilidad.


Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección
En el presente artículo, finalizaremos el trabajo con las clases de los objetos de gráfico y sus colecciones. Implementaremos el seguimiento automático del cambio de las propiedades de los gráficos y sus ventanas, y también el almacenamiento de los parámetros en las propiedades del objeto. Estas mejoras nos permitirán en el futuro crear una funcionalidad de eventos para la colección de gráficos al completo.


Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.


Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico
En este artículo, ampliaremos la funcionalidad de los objetos de gráfico, organizaremos la navegación por los gráficos, crearemos capturas de pantalla, y también guardaremos plantillas y las aplicaremos a los gráficos. Asimismo, implementaremos la actualización automática de la colección de objetos de gráfico, sus ventanas y los indicadores en ellas.


Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.


Scalping combinatorio: analizando transacciones del pasado para aumentar el rendimiento de las transacciones futuras
Ofrecemos al lector la descripción de una tecnología para aumentar la eficacia de cualquier sistema de comercio automático. El artículo expone brevemente la idea, los fundamentos básicos, las posibilidades y las desventajas del método.


Otras clases en la biblioteca DoEasy (Parte 68): Clase de objeto de ventana de gráfico y clases de objetos de indicador en la ventana del gráfico
En este artículo, seguiremos desarrollando la clase de objeto de gráfico. Para ello, le añadiremos una lista de objetos de ventana de gráfico, en la que, a su vez, estarán disponibles las listas de indicadores colocados en ellos.


Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.

Aprendizaje de máquinas en sistemas comerciales con cuadrícula y martingale. ¿Apostaría por ello?
En este artículo, presentaremos al lector la técnica del aprendizaje automático para el comercio con martingale y cuadrícula. Para nuestra sorpresa, este enfoque, por algún motivo, no se ha tratado en absoluto en la red global. Después de leer el artículo, podremos crear nuestros propios bots.

Redes neuronales: así de sencillo (Parte 11): Variaciones de GTP
Hoy en día, quizás uno de los modelos de lenguaje de redes neuronales más avanzados sea GPT-3, que en su versión máxima contiene 175 mil millones de parámetros. Obviamente, no vamos a crear semejante monstruo en condiciones domésticas. Pero sí que podemos ver qué soluciones arquitectónicas se pueden usar en nuestro trabajo y qué ventajas nos ofrecerán.


Trabajando con los precios y Señales en la biblioteca DoEasy (Parte 65): Colección de la profundidad de mercado y clase para trabajar con las Señales MQL5.com
En el presente artículo, crearemos una clase de colección de profundidad de mercado para todos los símbolos y comenzaremos a desarrollar la funcionalidad necesaria para trabajar con el servicio de señales de MQL5.com. Para ello, crearemos una clase de objeto de señal.


Algoritmo de autoadaptación (Parte IV): Funcionalidad adicional y pruebas
Seguimos completando el algoritmo con la funcionalidad mínima necesaria y realizando pruebas con el material obtenido. La rentabilidad ha resultado baja, pero los artículos nos muestran un modelo que nos permite comerciar con beneficios de una forma completamente automática con instrumentos comerciales completamente diferentes, y no solo diferentes, sino que también se comercian en mercados fundamentalmente distintos.

Redes neuronales: así de sencillo (Parte 10): Multi-Head Attention (atención multi-cabeza)
Ya hemos hablado con anterioridad del mecanismo de auto-atención (self-attention) en las redes neuronales. En la práctica, en las arquitecturas de las redes neuronales modernas, se usan varios hilos de auto-atención paralelos para buscar diversas dependencias entre los elementos de la secuencia. Vamos a ver la implementación de este enfoque y evaluar su influencia en el rendimiento general de la red.


Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes
Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.

Buscando patrones estacionales en el mercado de divisas con la ayuda del algoritmo CatBoost
En el presente artículo, mostramos la posibilidad de crear modelos de aprendizaje automático con filtros temporales y también descubrimos la efectividad de este enfoque. Ahora, podremos descartar el factor humano, diciéndole simplemente al modelo: "Quiero que comercies a una hora determinada de un día concreto de la semana". Así, podremos delegar en el algoritmo la búsqueda de patrones.


Algoritmo de autoadaptación (Parte III): Renunciando a la optimización
No podemos obtener un algoritmo verdaderamente estable si para seleccionar los parámetros utilizamos la optimización basada en datos históricos. Un algoritmo estable en sí mismo debe saber qué parámetros se necesitan para trabajar con cualquier instrumento comercial en cualquier momento. El algoritmo no debe suponer ni adivinar: debe saber con certeza.


El mercado y la física de sus patrones globales
En el presente artículo trataremos de comprobar la suposición de que cualquier sistema con un mínimo conocimiento del mercado puede operar a escala global. No vamos a inventar teorías ni leyes: reflexionaremos únicamente sobre la base de hechos conocidos por todos, convirtiendo paulatinamente dichos hechos al lenguaje del análisis matemático.


Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado
En el presente artículo, empezaremos a desarrollar la funcionalidad para trabajar con la Profundidad del mercado. Crearemos la clase del objeto de una orden abstracta de la Profundidad del mercado y sus clases herederas.

Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado
Ya hemos recorrido un largo camino y el código de nuestra biblioteca ha crecido de manera considerable. Resulta difícil monitorear todas las conexiones y dependencias. Y, obviamente, antes de proseguir con el desarrollo del proyecto, necesitaremos documentar el trabajo ya realizado y actualizar la documentación en cada paso posterior. Una documentación debidamente redactada nos ayudará a ver la integridad de nuestro trabajo.


Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado
En este artículo, vamos a desarrollar la actualización de la colección de datos de tick en tiempo real, y prepararemos una clase del objeto de símbolo para manejar la Profundidad del mercado, con la que empezaremos a trabajar a partir del siguiente artículo.