Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes
En este artículo, vamos a mejorar la capacidad de respuesta del Panel de administración que hemos creado anteriormente. Además, exploraremos la importancia de los mensajes rápidos en el contexto de las señales de negociación.
Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias
Los modelos ocultos de Markov (Hidden Markov Models, HMM) son potentes herramientas estadísticas que identifican los estados subyacentes del mercado mediante el análisis de los movimientos observables de los precios. En el ámbito bursátil, los HMM mejoran la predicción de la volatilidad y proporcionan información para las estrategias de seguimiento de tendencias mediante la modelización y la anticipación de los cambios en los regímenes de mercado. En este artículo, presentaremos el procedimiento completo para desarrollar una estrategia de seguimiento de tendencias que utiliza HMM para predecir la volatilidad como filtro.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 7): Signal Pulse EA
Aproveche todo el potencial del análisis multitemporal con «Signal Pulse», un asesor experto MQL5 que integra las bandas de Bollinger y el oscilador estocástico para ofrecer señales de trading precisas y de alta probabilidad. Descubra cómo implementar esta estrategia y visualizar eficazmente las oportunidades de compra y venta utilizando flechas personalizadas. Ideal para operadores que buscan mejorar su capacidad de juicio mediante análisis automatizados en múltiples marcos temporales.
Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)
Se trata de un algoritmo propio. En este artículo, le presentaremos el Algoritmo de viaje evolutivo en el tiempo (TETA), inspirado en el concepto de universos paralelos y flujos temporales. La idea básica del algoritmo es que, si bien no es posible viajar en el tiempo en el sentido habitual, podemos elegir una secuencia de acontecimientos que generen realidades distintas.
Clústeres de series temporales en inferencia causal
Los algoritmos de agrupamiento en el aprendizaje automático son importantes algoritmos de aprendizaje no supervisado que pueden dividir los datos originales en grupos con observaciones similares. Utilizando estos grupos, puede analizar el mercado de un grupo específico, buscar los grupos más estables utilizando nuevos datos y hacer inferencias causales. El artículo propone un método original de agrupación de series temporales en Python.
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad
En la segunda parte del artículo pasaremos a la aplicación práctica del algoritmo BSO, realizaremos tests con funciones de prueba y compararemos la eficacia de BSO con otros métodos de optimización.
Desarrollamos un asesor experto multidivisa (Parte 7): Selección de grupos considerando el periodo forward
Anteriormente hemos evaluado la selección de un grupo de instancias de estrategias comerciales para mejorar el rendimiento cuando trabajan juntas solo durante el mismo periodo de tiempo en el que se han optimizado las instancias individuales. Veamos qué ocurre en el periodo forward.
Creación de un Panel de Administración de Operaciones en MQL5 (Parte V): Panel de Gestión de Operaciones (II)
En este artículo, mejoraremos el Panel de Gestión Comercial de nuestro Panel de Administración multifuncional. Hoy introduciremos una potente función de ayuda que simplificará el código, mejorando su legibilidad, su mantenimiento y su eficiencia. También demostraremos cómo integrar sin problemas botones adicionales y mejorar la interfaz para gestionar una gama más amplia de tareas de negociación. Ya sea para gestionar posiciones, ajustar órdenes o simplificar las interacciones de los usuarios, esta guía le ayudará a desarrollar un panel de gestión de operaciones sólido y sencillo de usar.
Creación de barras 3D basadas en el tiempo, el precio y el volumen
Qué son los gráficos de precios multidimensionales en 3D y cómo se crean. Cómo las barras 3D predicen las inversiones de precios, y cómo Python y MetaTrader 5 permiten construir estas barras volumétricas en tiempo real.
Creación de un modelo de restricción de tendencia de velas (Parte 6): Integración todo en uno
Un reto importante es la gestión de varias ventanas de gráficos del mismo par que ejecutan el mismo programa con diferentes funciones. Vamos a discutir cómo consolidar varias integraciones en un programa principal. Además, compartiremos ideas sobre la configuración del programa para imprimir en un diario y comentar el éxito de la emisión de señales en la interfaz de gráficos. Encontrará más información en este artículo a medida que avancemos en la serie de artículos.
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea
En este artículo, integramos botones interactivos en línea en un Asesor Experto MQL5, permitiendo el control en tiempo real a través de Telegram. Cada pulsación de botón desencadena acciones específicas y envía respuestas al usuario. También modularizamos las funciones para manejar los mensajes de Telegram y las consultas de devolución de llamada de forma eficiente.
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.
Implementación de los cierres parciales en MQL5
En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 5)
El presente artículo supone la quinta parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT 5.0. Hoy describiremos la estructura de los paquetes PUBLISH: cómo establecemos sus banderas de publicación (Publish Flags), codificamos cadenas de nombres de temas y establecemos IDs de paquetes cuando es necesario.
Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest
Continuamos desarrollando la biblioteca Connexus. En este capítulo, exploramos el concepto de cabeceras en el protocolo HTTP, explicando qué son, para qué sirven y cómo usarlos en las solicitudes. Cubrimos los principales encabezados utilizados en las comunicaciones con API y mostramos ejemplos prácticos de cómo configurarlos en la biblioteca.
De Python a MQL5: Un viaje hacia los sistemas de trading inspirados en la cuántica
El artículo analiza el desarrollo de un sistema de negociación inspirado en la cuántica, pasando de un prototipo en Python a una implementación en MQL5 para la negociación en el mundo real. El sistema utiliza principios de computación cuántica, como la superposición y el entrelazamiento, para analizar los estados del mercado, aunque funciona en ordenadores clásicos utilizando simuladores cuánticos. Las características principales incluyen un sistema de tres qubits para analizar ocho estados del mercado simultáneamente, períodos de revisión de 24 horas y siete indicadores técnicos para el análisis del mercado. Aunque los índices de precisión puedan parecer modestos, proporcionan una ventaja significativa cuando se combinan con estrategias adecuadas de gestión de riesgos.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos
En este artículo, realizaremos una visualización de datos mejorada que va más allá de los gráficos básicos, incorporando características como interactividad, datos en capas y elementos dinámicos, lo que permite a los operadores explorar tendencias, patrones y correlaciones de manera más eficaz.
Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)
El algoritmo Royal Flush Optimization del autor ofrece una nueva perspectiva en la resolución de problemas de optimización sustituyendo la clásica codificación binaria de los algoritmos genéticos por un enfoque basado en sectores e inspirado en los principios del póquer. El RFO demuestra cómo la simplificación de los principios básicos puede dar lugar a un método de optimización eficaz y práctico. El artículo presenta un análisis detallado del algoritmo y los resultados de las pruebas.
El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización
En este artículo, analizaremos el generador de números aleatorios Mersenne Twister y lo compararemos con el estándar en MQL5. También determinaremos la influencia de la calidad del generador de números aleatorios en los resultados de los algoritmos de optimización.
Optimización con el juego del caos — Game Optimization (CGO)
Hoy presentamos el nuevo algoritmo metaheurístico de Chaos Game Optimisation (CGO), que demuestra una capacidad única para mantener una alta eficiencia al trabajar con problemas de alta dimensionalidad. A diferencia de la mayoría de los algoritmos de optimización, el CGO no solo no pierde rendimiento, sino que a veces incluso lo aumenta cuando se escala el problema, lo cual supone su característica clave.
Creación de un Panel de administración de operaciones en MQL5 (Parte III): Ampliación de las clases incorporadas para la gestión de temas (II)
En este artículo, ampliaremos cuidadosamente la biblioteca Dialog existente para incorporar la lógica de gestión de temas. Además, integraremos métodos para cambiar de tema en las clases CDialog, CEdit y CButton utilizadas en nuestro proyecto de Panel de administración. Continúe leyendo para obtener perspectivas más reveladoras.
Algoritmo de Algas Artificiales (Artificial Algae Algorithm, AAA)
El artículo considera el Algoritmo de Algas Artificiales (Artificial Algae Algorithm, AAA) basado en procesos biológicos característicos de las microalgas. El algoritmo incluye movimiento en espiral, proceso evolutivo y adaptación, lo que le permite resolver problemas de optimización. El artículo analiza en profundidad los principios de funcionamiento del AAA y su potencial en la modelización matemática, destacando la conexión entre la naturaleza y las soluciones algorítmicas.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 12): Flujo externo (III) TrendMap
El flujo del mercado está determinado por las fuerzas entre alcistas y bajistas. Hay niveles específicos que el mercado respeta debido a las fuerzas que actúan sobre ellos. Los niveles de Fibonacci y VWAP son especialmente poderosos a la hora de influir en el comportamiento del mercado. Acompáñame en este artículo mientras exploramos una estrategia basada en los niveles VWAP y Fibonacci para la generación de señales.
Creación de un Panel de administración de operaciones en MQL5 (Parte VII): Usuario de confianza, recuperación y criptografía
Los avisos de seguridad, como los que se activan cada vez que actualiza el gráfico, agrega un nuevo par al chat con el EA del Panel de administración o reinicia la terminal, pueden volverse tediosos. En esta discusión, exploraremos e implementaremos una función que rastrea la cantidad de intentos de inicio de sesión para identificar a un usuario confiable. Después de una determinada cantidad de intentos fallidos, la aplicación pasará a un procedimiento de inicio de sesión avanzado, que también facilita la recuperación de la contraseña para los usuarios que la hayan olvidado. Además, cubriremos cómo se puede integrar eficazmente la criptografía en el Panel de administración para mejorar la seguridad.
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)
Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
Inferencia causal en problemas de clasificación de series temporales
En este artículo, examinaremos la teoría de la inferencia causal utilizando el aprendizaje automático, así como la implementación del enfoque personalizado en Python. La inferencia causal y el pensamiento causal tienen sus raíces en la filosofía y la psicología y desempeñan un papel importante en nuestra comprensión de la realidad.
Kit de herramientas de negociación MQL5 (Parte 5): Ampliación de la libreria EX5 de gestión del historial con funciones de posición
Descubra cómo crear funciones EX5 exportables para consultar y guardar de forma eficiente datos históricos de posición. En esta guía paso a paso, ampliaremos la libreria de gestión del historial EX5 mediante el desarrollo de módulos que recuperan las propiedades clave de la posición cerrada más recientemente. Entre ellos se incluyen el beneficio neto, la duración de la operación, el stop loss basado en pips, el take profit, los valores de beneficio y otros detalles importantes.
Análisis del impacto del clima en las divisas de los países agrícolas usando Python
¿Cómo se relacionan el clima y el mercado de divisas? La teoría económica clásica no ha reconocido durante mucho tiempo la influencia de estos factores en el comportamiento del mercado. Pero ahora las cosas han cambiado. Hoy intentaremos encontrar conexiones entre el estado del tiempo y la posición de las divisas agrarias en el mercado.
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (II)
El número de estrategias que se pueden integrar en un Asesor Experto es prácticamente ilimitado. Sin embargo, cada estrategia adicional aumenta la complejidad del algoritmo. Al incorporar múltiples estrategias, un Asesor Experto puede adaptarse mejor a las condiciones cambiantes del mercado, lo que puede mejorar su rentabilidad. Hoy exploraremos cómo implementar MQL5 para una de las estrategias más destacadas desarrolladas por Richard Donchian, mientras continuamos mejorando la funcionalidad de nuestro Asesor Experto Trend Constraint.
Cambiando a MQL5 Algo Forge (Parte 3): Uso de repositorios de terceros en su propio proyecto
Hoy veremos cómo podemos conectar el código de otra persona desde cualquier repositorio en el almacenamiento MQL5 Algo Forge a nuestro proyecto. En el presente artículo, finalmente abordaremos esta tarea prometedora pero también compleja: cómo conectar y utilizar en la práctica bibliotecas de repositorios de terceros del almacenamiento MQL5 Algo Forge en nuestro proyecto.
Métodos de optimización de la biblioteca ALGLIB (Parte II)
En este artículo seguiremos analizando los métodos restantes de optimización de la biblioteca ALGLIB, prestando especial atención a su comprobación con funciones multivariantes complejas. Esto nos permitirá no solo evaluar el rendimiento de cada algoritmo, sino también identificar sus puntos fuertes y débiles en diferentes condiciones.
Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz
¿Cómo funciona la negociación de portafolios en Fórex? ¿Cómo pueden sintetizarse la teoría de portafolios de Markowitz para optimizar las proporciones de los portafolios y el modelo VaR para optimizar el riesgo de los portafolios? Hoy crearemos un código de teoría de portafolios en el que, por un lado, obtendremos un riesgo bajo y, por otro, una rentabilidad aceptable a largo plazo.
Algoritmo de agujero negro — Black Hole Algorithm (BHA)
El algoritmo de agujero negro (BHA) utiliza los principios de la gravedad de los agujeros negros para optimizar las soluciones. En este artículo, analizaremos cómo el BHA atrae las mejores soluciones evitando los extremos locales, y por qué este algoritmo se ha convertido en una poderosa herramienta para resolver problemas complejos. Descubra cómo ideas sencillas pueden dar lugar a resultados impresionantes en el mundo de la optimización.
Predicción de tendencias con LSTM para estrategias de seguimiento de tendencias
La memoria a corto y largo plazo (Long Short-Term Memory, LSTM) es un tipo de red neuronal recurrente (Recurrent Neural Network, RNN) diseñada para modelar datos secuenciales capturando de manera efectiva las dependencias a largo plazo y abordando el problema del gradiente que se desvanece. En este artículo, exploraremos cómo utilizar LSTM para predecir tendencias futuras, mejorando el rendimiento de las estrategias de seguimiento de tendencias. El artículo tratará sobre la introducción de conceptos clave y la motivación detrás del desarrollo, la obtención de datos de MetaTrader 5, el uso de esos datos para entrenar el modelo en Python, la integración del modelo de aprendizaje automático en MQL5 y la reflexión sobre los resultados y las aspiraciones futuras basadas en pruebas estadísticas retrospectivas.
Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte I)
El presente artículo presenta un experimento único cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficientemente los mínimos locales cuando la diversidad en la población es baja y alcanzar los máximos globales. Los trabajos en este campo nos permitirán comprender mejor qué algoritmos específicos pueden continuar con éxito la búsqueda a partir de las coordenadas fijadas por el usuario como punto de partida, y qué factores influyen en su éxito en este proceso.
Clase básica de algoritmos de población como base para una optimización eficaz
El presente material supone un intento único de investigación para combinar una variedad de algoritmos de población en una sola clase y simplificar la aplicación de técnicas de optimización. Este enfoque no solo descubre oportunidades para el desarrollo de nuevos algoritmos, incluidas variantes híbridas, sino que también crea un banco de pruebas básico y versátil. Este banco se convertirá así en una herramienta clave para seleccionar el algoritmo óptimo según un problema específico.
Búsqueda dialéctica - Dialectic Search (DA)
Hoy nos familiarizaremos con el Algoritmo Dialéctico (DA), un nuevo método de optimización global inspirado en el concepto filosófico de la dialéctica. El algoritmo explota la singular división de la población en pensadores especulativos y prácticos. Las pruebas demuestran un impresionante rendimiento de hasta el 98% en tareas pequeñas y una eficiencia global del 57,95%. El artículo explica estas métricas y presenta una descripción detallada del algoritmo y resultados experimentales con distintos tipos de características.
Puntuación de propensión (Propensity score) en la inferencia causal
Este artículo trata el tema del emparejamiento en la inferencia causal. El emparejamiento se usa para emparejar observaciones similares en un conjunto de datos. Esto es necesario para identificar correctamente los efectos causales, eliminando el sesgo. Hoy explicaremos cómo esto ayuda a crear sistemas comerciales basados en el aprendizaje automático que se vuelven más robustos con nuevos datos en los que no se ha entrenado. El papel principal lo asignaremos a la puntuación de propensión, ampliamente utilizada en la inferencia causal.
Algoritmo de trading evolutivo con aprendizaje por refuerzo y extinción de individuos no rentables (ETARE)
Hoy le presentamos un innovador algoritmo comercial que combina algoritmos evolutivos con aprendizaje profundo por refuerzo para la negociación de divisas. El algoritmo utiliza un mecanismo de extinción de individuos ineficaces para optimizar la estrategia comercial.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 10): Flujo externo (II) VWAP
¡Domina el poder del VWAP con nuestra guía completa! Aprenda a integrar el análisis VWAP en su estrategia de trading utilizando MQL5 y Python. Maximice su conocimiento del mercado y mejore sus decisiones comerciales hoy mismo.