In diesem Beitrag widmen wir uns einer neuen und vielversprechenden Richtung des maschinellen Lernens: dem tiefen Lernen oder, genauer gesagt, tiefen neuronalen Netzwerken. Wir sehen uns kurz noch einmal die zweite Generation der neuronalen Netzwerke, die Architektur ihrer Verknüpfungen und die wichtigsten Typen, Methoden und Regeln des Einlernens sowie ihre wichtigsten Unzulänglichkeiten an und gehen dann zur Geschichte der Entwicklung der dritten Generation der neuronalen Netzwerke, ihren wichtigsten Typen, Besonderheiten und Einlernmethoden über. Wir führen praktische Experimente zum Aufbau und zum Einlernen eines tiefen neuronalen Netzwerks durch, eingeleitet durch die Gewichte eines gestackten Autoencoders mit realen Daten. Alle Phasen von der Auswahl der Eingabedaten bis zur Ableitung von Messwerten werden detailliert besprochen.