
Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями
В статье представлен способ реализации задач оптимизации с несколькими целями и ограничениями при выборе режима Custom Max в настройках терминала MetaTrader 5. Например, задача оптимизации может быть следующей: максимизировать фактор прибыли, чистую прибыль и фактор восстановления таким образом, чтобы просадка была менее 10%, количество последовательных убытков было менее 5, а количество сделок в неделю было более 5.

Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)
В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.

Разработка системы репликации - Моделирование рынка (Часть 05): Предварительный просмотр
Нам удалось разработать способ осуществления репликации рынка достаточно реалистичным и доступным образом. Теперь давайте продолжим наш проект и добавим данные для улучшения поведения репликации.

Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля
По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.

Разработка системы репликации - Моделирование рынка (Часть 07): Первые улучшения (II)
В предыдущей статье мы внесли исправления в некоторые моменты и добавили тесты в нашу систему репликации для обеспечения максимально возможной стабильности. Мы также начали создавать и использовать конфигурационный файл для данной системы.

Возможности Мастера MQL5, которые вам нужно знать (Часть 18): Поиск нейронной архитектуры с использованием собственных векторов
Поиск нейронной архитектуры (Neural Architecture Search), автоматизированный подход к определению идеальных настроек нейронной сети, может стать преимуществом при наличии большого количества вариантов и больших наборов тестовых данных. Здесь мы рассмотрим, как этот подход можно сделать еще более эффективным с помощью парных собственных векторов (Eigen Vectors).

Торговый инструментарий MQL5 (Часть 2): Расширение и применение EX5-библиотеки для управления позициями
Узнайте, как импортировать и использовать EX5-библиотеки в вашем коде или проектах MQL5. В этой статье мы расширим ранее созданную EX5-библиотеку, добавив больше функций управления позициями и создав два советника. В первом примере будет использоваться технический индикатор Variable Index Dynamic Average для разработки советника по стратегии трейлинг-стопа, а во втором - торговая панель для мониторинга, открытия, закрытия и изменения позиций. Эти два примера продемонстрируют, как использовать обновленную EX5-библиотеку для управления позициями.

Самооптимизирующийся советник на языках MQL5 и Python (Часть IV): Стекинг моделей
В статье мы продемонстрируем, как можно создавать торговые приложения на базе ИИ, способные учиться на собственных ошибках. Мы рассмотрим технику, известную как стекинг (stacking), при которой мы используем 2 модели для создания 1 прогноза. Первая модель, как правило, является более слабым обучающимся алгоритмом, а вторая - более мощной моделью, которая обучается на результатах более слабого алгоритма. Наша цель — создать ансамбль моделей, чтобы достичь более высокой точности.

Матричная факторизация: моделирование, которое более практично
Вы могли не заметить, что моделирование матриц оказалось немного странным, так как указывались не строки и столбцы, а только столбцы. Это выглядит очень странно при чтении кода, выполняющего матричные факторизации. Если вы ожидали увидеть указанные строки и столбцы, то могли бы запутаться при попытке выполнить факторизацию. Более того, данный способ моделирования матриц не самый лучший. Это связано с тем, что когда мы моделируем матрицы таким образом, то сталкиваемся с некими ограничениями, которые заставляют нас использовать другие методы или функции, которые не были бы необходимы, если бы моделирование осуществлялось более подходящим способом.

Разработка системы репликации - Моделирование рынка (Часть 09): Пользовательские события
Здесь мы увидим, как активировать пользовательские события и проработать вопрос о том, как индикатор сообщает о состоянии сервиса репликации/моделирования.

Как опередить любой рынок (Часть V): Альтернативные данные FRED EURUSD
В статье использованы альтернативные ежедневные данные Федерального резервного банка Сент-Луиса по обобщенному индексу доллара США и набор других макроэкономических показателей для прогнозирования будущего обменного курса EURUSD. К сожалению, хотя данные, по-видимому, имеют почти идеальную корреляцию, нам не удалось получить никаких существенных преимуществ в точности нашей модели, что, наводит нас на мысль, что инвесторам, возможно, лучше использовать обычные рыночные котировки.

Переосмысливаем классические стратегии (Часть III): Прогнозирование более высоких максимумов и более низких минимумов
В статье мы эмпирически проанализируем классические торговые стратегии, чтобы увидеть, можно ли улучшить их с помощью искусственного интеллекта (ИИ). Мы попытаемся предсказать более высокие максимумы и более низкие минимумы, используя модель линейного дискриминантного анализа (Linear Discriminant Analysis).

Разработка системы репликации (Часть 36): Внесение корректировок (II)
Одна из вещей, которая может усложнить нашу жизнь как программистов, - это предположения. В этой статье я покажу вам, как опасно делать предположения: как в части программирования на MQL5, где принимается, что у курса будет определенная величина, так и при использовании MetaTrader 5, где принимается, что разные серверы работают одинаково.

Как реализовать автоматическую оптимизацию в советниках MQL5
Пошаговое руководство по автоматической оптимизации на MQL5 для советников. Мы рассмотрим надежную логику оптимизации, лучшие практики по выбору параметров, а также как реконструировать стратегии с помощью бэк-тестирования. Кроме того, будут рассмотрены методы более высокого уровня, такие как пошаговая форвард-оптимизация, которые улучшат ваш подход к трейдингу.

Разработка системы репликации - Моделирование рынка (Часть 03): Внесение корректировок (I)
Начнем с прояснения нынешней ситуации, потому что мы начали не самым лучшим образом. Если не сделать этого сейчас, то вскоре мы окажемся в беде.

Разработка системы репликации (Часть 40): Начало второй фазы (I)
Сегодня поговорим о новой фазе системы репликации/моделирования. На данном этапе разговор станет поистине интересным, а содержанием довольно насыщенным. Я настоятельно рекомендую вам внимательно прочитать статью и пользоваться приведенными в ней ссылками. Это поможет вам лучше понять содержание.

Разработка системы репликации (Часть 39): Прокладываем путь (III)
Прежде, чем приступить ко второму этапу разработки, необходимо закрепить несколько идей. Знаете ли вы, как заставить MQL5 делать то, что вам необходимо? Пытались ли когда-нибудь выйти за рамки того, что содержится в документации? Если нет, то приготовьтесь. Потому что прямо сейчас мы будем делать то, чем большинство людей обычно не занимается.

Разработка системы репликации (Часть 43): Проект Chart Trade (II)
Большинство людей, которые хотят или мечтают научиться программировать, на самом деле не имеют представления о том, что делают. Их деятельность заключается в попытках создавать вещи определенным образом. Однако программирование – это вовсе не подгонка под ответ подходящих решений. Если действовать таким образом, можно создать больше проблем, чем решений. Здесь мы будем делать нечто более продвинутое и, следовательно, другое.

Разработка системы репликации (Часть 49): Все усложняется (I)
В этой статье мы немного усложним ситуацию. Используя то, что было показано в предыдущих статьях, мы начнем открывать доступ к файлу шаблона, чтобы пользователь мог использовать свой собственный шаблон. Однако я буду вносить изменения постепенно, так как также буду дорабатывать индикатор, чтобы снизить нагрузку на MetaTrader 5.

Разработка системы репликации - Моделирование рынка (Часть 08): Блокировка индикатора
В этой статье мы рассмотрим, как заблокировать индикатор при простом использовании языка MQL5, и сделаем это очень интересным и удивительным способом.

Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5
Статья представляет реализацию алгоритма выбора признаков, описанного в научной работе "FREL: Стабильный алгоритм выбора признаков" (FREL: A stable feature selection algorithm). Сам алгоритм называется "Взвешивание признаков как регуляризованное обучение на основе энергии" (Feature weighting as regularized energy based learning).

Возможности Мастера MQL5, которые вам нужно знать (Часть 16): Метод главных компонент с собственными векторами
В статье рассматривается метод главных компонент — метод снижения размерности при анализе данных, а также то, как его можно реализовать с использованием собственных значений и векторов. Как всегда, мы попытаемся разработать прототип класса сигналов советника, который можно будет использовать в Мастере MQL5.

Разработка системы репликации (Часть 73): Неожиданный способ оповещений (II)
В этой статье мы рассмотрим, как передавать информацию в режиме реального времени между индикатором и сервисом, а также разберемся, почему могут возникнуть проблемы при изменении таймфрейма и как их решать. В качестве бонуса вы получите доступ к последней версии приложения репликации/моделирования.

Разработка системы репликации (Часть 51): Все усложняется (III)
В данной статье мы разберемся с одним из самых сложных вопросов сферы программирования на MQL5: как правильно получить ID графика, и почему иногда объекты не строятся на графике. Представленные здесь материалы носят исключительно дидактический характер. Ни в коем случае нельзя рассматривать приложение ни с какой иной целью, кроме как для изучения и освоения представленных концепций.

Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели
Мы применим простую цепь Маркова к индикатору RSI, чтобы наблюдать за поведением цены после того, как индикатор проходит через ключевые уровни. Мы пришли к выводу, что самые сильные сигналы на покупку и продажу по паре NZDJPY генерируются, когда RSI находится в диапазоне 11–20 и 71–80 соответственно. Мы покажем, как можно манипулировать данными, чтобы создавать оптимальные торговые стратегии, основанные непосредственно на имеющихся данных. Кроме того, мы продемонстрируем, как обучить глубокую нейронную сеть оптимальному использованию матрицы перехода.

Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands
В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.

Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов
В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.

Реализация модели таблицы в MQL5: Применение концепции MVC
В статье рассмотрим процесс разработки модели таблицы на языке MQL5 с использованием архитектурной концепции MVC (Model-View-Controller) для разделения логики данных, представления и управления, что помогает создавать структурированный, гибкий и масштабируемый код. Рассмотрим реализацию классов для построения модели таблицы, включая использование связанных списков для хранения данных.

Совместное использование PSAR, Хейкин-Аши и глубокого обучения для трейдинга
В настоящем проекте исследуется сочетание глубокого обучения и технического анализа для тестирования торговых стратегий на рынке Форекс. Для быстрого экспериментирования используется скрипт на Python, использующий модель ONNX наряду с традиционными индикаторами, такими как PSAR, SMA и RSI, для прогнозирования движения пары EUR/USD. Затем скрипт MetaTrader 5 переносит эту стратегию в реальную среду, используя исторические данные и технический анализ для принятия обоснованных торговых решений. Результаты тестирования на исторических данных свидетельствуют об осторожном, но последовательном подходе, направленном на управление рисками и устойчивый рост, а не на агрессивную погоню за прибылью.

Визуальная оценка и корректировка торговли в MetaTrader 5
В тестере стратегий можно не только оптимизировать параметры торгового робота. Мы покажем, как оценить постфактум проторгованную историю своего счёта и внести корректировки в торговлю в тестере, изменяя размеры стоп-приказов открываемых позиций.

Разработка системы репликации - Моделирование рынка (Часть 04): Внесение корректировок (II)
Сегодня мы продолжим разработку системы и управления. Без возможности управления сервисом сложно двигаться вперед и совершенствовать систему.

Фильтр Калмана для возвратных стратегий на рынке Форекс
Фильтр Калмана представляет собой рекурсивный алгоритм, применяемый в алготрейдинге для оценки истинного состояния финансового временного ряда посредством фильтрации шума из движения цен. Он динамически обновляет прогнозы на основе новых рыночных данных, что делает его ценным для таких адаптивных стратегий, как возвратные. В этой статье впервые представлен фильтр Калмана, а также рассмотрены его расчет и реализация. Кроме того, в качестве примера мы применим этот фильтр к классической возвратной форекс-стратегии. Наконец, проведем различные виды статистического анализа, сравнивая фильтр со скользящей средней на различных валютных парах.

Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)
В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.

Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR
В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить стратегию с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких инструментов с использованием корзины коррелированных ценных бумаг. Сосредоточимся на экзотической валютной паре USDZAR.

Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)
В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.

Метод группового учета аргументов: реализация комбинаторного алгоритма на MQL5
В этой статье мы продолжаем изучение семейства алгоритмов группового учета аргументов. Реализуем средствами MQL5 комбинаторный алгоритм, а также его усовершенствованную версию — комбинаторный селективный алгоритм.

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция
Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.

Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель
Продолжаем попытки дешифровать движения цен... Как насчет лингвистического анализа "словаря рынка", который мы получим, преобразовав бинарный код цены в BIP39? В этой статье мы углубимся в инновационный подход к анализу биржевых данных и рассмотрим, как современные методы обработки естественного языка могут быть применены к языку рынка.

Построение модели для ограничения диапазона сигналов по тренду (Часть 9): Советник с несколькими стратегиями (II)
Количество стратегий, которые можно интегрировать в виде советника, практически безгранично. Однако каждая дополнительная стратегия увеличивает сложность алгоритма. Благодаря использованию нескольких стратегий советник может лучше адаптироваться к изменяющимся рыночным условиям, что потенциально повышает его прибыльность. Сегодня мы рассмотрим, как реализовать в MQL5 одну из выдающихся стратегий, разработанных Ричардом Дончианом, продолжая при этом совершенствовать функциональность нашего советника Trend Constraint.

Разработка системы репликации (Часть 56): Адаптация модулей
Несмотря на то, что модули уже взаимодействуют друг с другом должным образом, при попытке использовать указатель мыши в сервисе репликации, возникает ошибка. Нам нужно исправить это прежде, чем переходить к следующему этапу. Кроме того, была исправлена проблема в коде индикатора мыши. Таким образом, эта версия наконец-то стала стабильной и правильно доработанной.