

MetaTrader5の任意のシンボルでトレーディングアイデアをテスト!
カスタムシンボルを作成すると、トレーディングシステムと金融相場分析に役立ちます。 今日ではトレーダーは、無数のチャートやテストトレード戦略をプロットすることができます。


最適化管理 (パート I): GUI の作成
この記事では、MetaTrader ターミナルの拡張機能を作成するプロセスについて説明します。 このソリューションは、他のターミナルで最適化を実行する際、最適化プロセスを自動化するのに役立ちます。 このトピックに関する記事をいくつか書きます。 拡張機能は C# 言語とデザイン パターンを使用して開発されました。優先プログラミング言語の機能です。


ローソク足分析技術の研究(第2部): 新規パターンの自動検索
前回の記事では、さまざまな既存のローソク足の形成から選択された14のパターンを分析しました。すべてのパターンを1つずつ分析することは不可能であるため、別の解決策を見つけました。新しいシステムは、既知のローソク足タイプに基づいて新しいローソク足パターンを検索してテストします。

カスタムシンボル。実用的な基礎
この記事では、クオートを表示するための一般的な方法を示すために、カスタムシンボルプログラムの生成を行います。 派生したカスタムシンボルチャートから実際のシンボルをトレードするためのEAにおける提案された亜種についても説明します。 この記事にはMQLのソースコードが添付されています。


初めてのGrail
初心者プログラマが「金のなる木」を作成させる最も頻度の高い失敗が調査されました。テスターではすばらしい結果を示したが、実際のトレーディングでは損失を出したエキスパートが示されています。

連続的なウォークフォワード最適化(その7)。オートオプティマイザの論理部分をグラフィックスでバインドし、プログラムからグラフィックスを制御する
この記事では、オートオプティマイザプログラムのグラフィカルな部分と論理的な部分の接続について説明します。 ボタンクリックから最適化マネージャへのタスクリダイレクトまで、最適化の起動プロセスを考慮します。


制御された最適化: シミュレーティットアニーリング
MetaTrader5トレーディングプラットフォームのストラテジーテスターは、パラメータと遺伝的アルゴリズムの完全な検索、つまり、2 つの最適化オプションのみを提供します。 この記事では、トレーディング戦略を最適化するための新しいメソッドを提案します (シミュレーティットアニーリング)。 このメソッドのアルゴリズム、実装、およびEAへの統合を考察します。 開発したアルゴリズムは移動平均 EA でテストします。


MQL5 Cookbook:トレードレベルを設定/変更する際エラーを避ける方法
シリーズの前稿 "MQL5 Cookbook: Analyzing Position Properties in the MetaTrader 5 Strategy Tester" からの Expert Advisor への取り組みの続編として、既存の関数を改良、最適化しつつ有用な関数を数多く用いて Expert Advisor を強化していきます。今回 Expert Advisor は MetaTrader 5 「ストラテジーテスタ」で最適化可能な外部パラメータを取得し、いくつかの点でシンプルなトレーディングシステムのようになります。


トレードオブジェクト: メタトレーダーのグラフィカルオブジェクトに基づいたトレードの自動化
この記事では、チャートのリニアマークアップに基づいて自動トレーディングシステムを作成するための簡単なアプローチを扱います。MetaTrader4 およびMetaTrader5のオブジェクトの標準プロパティを使用して既製EAを提供し、トレードオペレーションをサポートしています。


バランスグラフを使用した戦略の最適化と、結果の「バランス+最大シャープレシオ」基準との比較
本稿では、バランスグラフ分析に基づいたカスタム取引戦略最適化基準をさらにもう1つ考察します。線形回帰は、ALGLIBライブラリの関数を使用して計算されます。


Boxplotによる金融時系列のシーズンパターンの探索
この記事では、Boxplotを使用して価格時系列のシーズン特性を表示します。 各Boxplot(あるいは"ボックスアンドウイスキーダイアグラム") は、データセットに沿って値がどのように分布しているかを示す優れたものです。 Boxplotは、視覚的に似ていますが、ローソク足チャートと混同しないでください。

母集団最適化アルゴリズム:灰色オオカミオプティマイザー(GWO)
最新の最適化アルゴリズムの1つである灰色オオカミオプティマイザについて考えてみましょう。テスト関数の元々の動作により、このアルゴリズムは、以前に検討されたものの中で最も興味深いものの1つになります。これは、ニューラルネットワークの訓練に使用される最も優れたアルゴリズムの1つであり、多くの変数を持つ滑らかな関数です。

連続的なウォークフォワード最適化(その6):オートオプティマイザの論理部分と構造
記事3と4以前、我々は自動ウォークフォワード最適化の作成を検討しました。 今回は、オートオプティマイザツールの内部構造について進めていきます。 この記事は、作成したプロジェクトをさらに稼働したい方、修正したい方はもちろん、プログラムのロジックを理解したい方にも役立つ内容となっています。 今回の記事では、プロジェクトの内部構造とオブジェクト間の関係を示すUML図を掲載します。 また、最適化開始までの過程が記述されていますが、オプティマイザの実装過程が記述されていない状態です。


トレンドとフラットの戦略を個別に最適化する
この記事では、さまざまな市場条件に対して個別に最適化する方法について説明しています。個別最適化とは、上昇トレンドと下降トレンドを別々に最適化して取引システムの最適なパラメータを決定することです。誤ったシグナルの影響を減らして収益性を向上させるために、システムは柔軟に作られています。つまり、市場の動きは常に変化を伴う為、システムには特定の設定や入力データのセットがあります。


考えられる.EAをリアルタイムで最適化するためのインジケータの使用法
トレーディングロボットの効率は、そのパラメータの正しい選択 (最適化) に依存します。 ただし、ある特定の時間間隔で最適と見なされるパラメータは、別の期間でもその有効性を保持することはできません。 その上、EA がテストの期間で利益を出したとしてもリアルでは損失になることもあります。 継続的な最適化における問題はこれらを背景としています。 ルーチンワークに直面するとき、人は自動化する方法を模索しようとします。 この記事では、この問題を解決するための非標準的なアプローチを提案します。


MetaTrader 5 ターミナルのストラテジーテスタ内でティック作成をするアルゴリズム
MetaTrader 5 により内蔵ストラテジーテスタでExpert Advisors および MQL5を利用し自動トレーディングをシミュレートすることができます。このタイプのシミュレーションは Expert Advisorsの検証と呼ばれ、マルチスレッド最適化を用い、同時に数多くのインスツルメントについて実装することができます。完全な検証のために用可能な分履歴をもとにティック生成が行われる必要があります。本稿ではアルゴリズムの詳細記述を提供します。それによりティックはMetaTrader 5 クライアントターミナルで履歴検証に対して作成されます。

連続ウォークスルー最適化(パート2):ロボットの最適化レポート作成のメカニズム
ウォークスルー最適化シリーズの最初の記事では、自動オプティマイザで使用するDLLの作成について説明しました。 今回は完全にMQL5言語に専念します。


MetaTrader 5とMQL5の提供する限りのない機会
この記事では、MQL5を0から学び始めて9ヶ月でどれほどの結果を得ることができるかという点とともに、トレーダーのプログラムがどのようなもになることができるかの例を紹介したいと思います。この例は、価格チャートで最小限のスペースを使用しながら、プログラムがどれほど多機能に、かつ、情報を提供するようになるのかについて紹介します。そして、ユーザーにとってトレードパネルがどれほどカラフル、明るく、直感的に分かりやすくなるか見ることができます。その他数多くの機能を紹介します。


トレード戦略の色の最適化
この記事では、ある実験をします。つまり、色の最適化の結果を行います。 色は、赤、緑、青 (RGB) のレベルの3つのパラメータによって決まります。 他にも3つのパラメータを使用した色分け方法があります。 したがって、3つのテストパラメータを1つの色に変換して、値を視覚的に表すことができます。 この記事を読んで、このような表現が役立つかどうかを確認してください。


ミニマーケットエミュレータまたは手動ストラテジーテスター
ミニマーケットエミュレータは、端末での作業の部分的なエミュレーション用に設計された指標で、市場分析と取引の「手動」戦略をテストするために使用することができるでしょう。


トレーダーライフハック:"静かな"最適化とプロットトレード分布
トレードのヒストリーの分析とポジションエントリーの時間に応じて、HTMLでトレード結果の分布図をプロットします。このチャートは、次の3つのセクションで表示されています - 時間、曜日及び月。

MQL5ストラテジーテスターを理解し、効果的に活用する
MQL5のプログラマーや開発者は、重要で貴重なツールをマスターする必要があります。ストラテジーテスターはこれらのツールのうちの1つです。この記事は、MQL5のストラテジーテスターを理解し、使用するための実践的なガイドです。


ターミナル MetaTrader 4 のテスター:これは知っているべきです
ターミナル MetaTrader 4 の精巧なインターフェースは最先端のものですが、それだけではなくターミナルには周到な戦略テスターが備わっています。 トレーディングターミナルとしての MetaTrader 4 の価値が明確である一方、テスターの戦略検証のクオリティは実践でのみ評価することができます。本稿では MetaTrader 4 で検証を行うことのメリットと利便性について説明します。


MQL5 クックブック: マルチ通貨 Expert Advisor - シンプル、かしこい、迅速なアプローチ
本稿ではマルチ通貨 Expert Advisorに適切なシンプルなアプローチの実装について述べます。これは理想的な条件下でありながら各シンボルに対して異なるパラメータでExpert Advisor を検証/トレーディングする設定を可能にするということです。例として2個のシンボルに対するパターンを作成しますが、コードに少し変更を加えるだけで必要に応じてそれ以外のシンボルも追加できるようにしておきます。


アルゴリズムトレードにおける Kohonen ニューラルネットワークの活用 パート II. 最適化と予測
Kohonen ネットワークを扱うために設計されたユニバーサルツールに基づいて、最適なEAパラメータを分析して選択するシステムを構築し、時系列の予測を検討します。 第 I 部では、必要なアルゴリズムを追加して、一般に公開されているニューラルネットワーククラスを修正し、改善しました。 今回はこれを実践に応用しましょう。

パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能
本稿では、前の記事で設定した目標に基づいて改良された総当たり攻撃バージョンについてお話します。エキスパートアドバイザーをこの方法で取得した設定で使用して、このトピックをできるだけ広くカバーするようにします。新しいプログラムバージョンも添付されています。

取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ
PythonでCatBoost分類器を訓練してモデルをmql5にエクスポートし、モデルパラメータとカスタムストラテジーテスターを解析します。Python言語とMetaTrader5ライブラリは、データの準備とモデルの訓練に使用されます。


選択した基準による最適化結果の可視化
この記事では、前回の記事で始まった最適化結果を扱うMQLアプリケーションの開発を続けます。今回は、グラフィカルインターフェースを介して、別の基準を指定してパラメーターを最適化した後、最良の結果の表を作成する例をご紹介します。

最適化結果の視覚的評価
この記事では、すべての最適化パスのグラフを作成する方法と、最適なカスタム基準を選択する方法について検討します。また、Webサイトに公開されている記事とフォーラムのコメントを使用して、MQL5の知識がほとんどない状態で目的のソリューションを作成する方法についても説明します。

MQL5入門(第1部):アルゴリズム取引入門ガイド
この初心者向けMQL5プログラミングガイドで、魅力的なアルゴリズム取引の世界へ飛び込みましょう。MetaTrader 5を動かす言語であるMQL5のエッセンスを発見し、自動売買の世界を解明します。基本を理解することからコーディングの第一歩を踏み出すことまで、この記事はプログラミングの知識がなくてもアルゴリズム取引の可能性を解き放つ鍵となります。MQL5のエキサイティングな宇宙で、一緒に、シンプルさと洗練が出会う旅に出ましょう。

取引におけるニューラルネットワークの実用化(実践編)
本稿では、Matlabプラットフォームでニューラルネットワークモジュールを実際に使用するための説明と手順を説明します。また、ニューラルネットワークモジュールを使用した取引システム作成の主な側面についても説明します。1つの記事で複合体を紹介できるようにするには、複数のニューラルネットワークモジュール機能を1つのプログラムに組み合わせるように変更する必要がありました。


直近のピップのプロフィットダウンを抽出
この記事では、アルゴリズムトレード分野における理論と実践を組み合わせる試みについて説明します。 トレーディングシステムの作成に関する考察のほとんどは、ヒストリーバーや適用される様々なインジケータの使用に関連します。 これは最もよくカバーされたフィールドであるため、詳細は考慮しません。 バーは人工的なエンティティを表します。したがって、プロトデータに近い何か、すなわち価格ティックで動作します。