MQL5 クックブック:MetaTrader 5 ストラレジーテスタでの position プロパティ分析
先行記事 "MQL5 Cookbook: Position Properties on the Custom Info Panel"の Expert Advisor の変更バージョンを提供します。お伝えする問題の中にはバーからのデータ取得、現シンボルにおける新規バーイベント確認、ファイルに標準ライブラリのトレードクラスのインクルード、トレード処理実行用トレードシグナルおよび関数検索のための関数作成、OnTrade() 関数におけるトレードイベント決定などがあります。
デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発
この記事では、CopyTicks() および CopyTicksRange() 関数を使用して、実際のボリュームに基づいた株価インジケータを開発するアルゴリズムを扱います。 このようなインジケータの開発については、リアルタイムでの操作とストラテジーテスターにおける細かい側面も説明されています。
リプレイシステムの開発 - 市場シミュレーション(第14回):シミュレーターの誕生(IV)
この記事ではシミュレーターの開発段階を続けます。 今回は、ランダムウォークタイプの動きを効果的に作成する方法を見ていきます。このような動きには非常に興味をそそられます。資本市場で起こるすべてのことの基礎がそれによって形成されるためです。さらに、市場分析をおこなう上で基本となるいくつかの概念についても理解を深めていきます。
MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る
この記事では、MQL5のエキスパートアドバイザー(EA)を使用した自動化について詳しく説明し、初期のバックテスト結果を分析します。この戦略には高い保有能力が必要であることを強調し、今後の回で距離、takeProfit、ロットサイズなどの主要パラメータを最適化する計画を概説します。本連載は、取引戦略の効率性と異なる市場環境への適応性を高めることを目的としています。
パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。
MQL5入門(第9回):MQL5のオブジェクトの理解と使用
現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。
特定のディストリビューション法によるカスタムシンボルを用いた時系列モデリング
この記事では、カスタムシンボルを作成および操作するためのターミナルの機能の概要を示し、カスタムシンボル、トレンド、さまざまなチャートパターンを使用してトレードヒストリーをシミュレートするための手法を提供します。
知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標
ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。
リプレイシステムの開発 - 市場シミュレーション(第20回):FOREX (I)
この記事の最初の目的は、外国為替取引のすべての可能性をカバーすることではなく、少なくとも1つのマーケットリプレイを実行できるようにシステムを適応させることです。シミュレーションはまた別の機会にしますが、ティックがなくバーだけでも、少しの努力で外国為替市場で起こりうる取引をシミュレートすることができます。シミュレーターをどのように適応させるかを検討するまでは、この状態が続くでしょう。システム内部でFXのデータに手を加えずに作業しようとすると、さまざまなエラーが発生します。
プロフィット引き出しモデル構築のためのTesterWithdrawal() 関数の使用
本稿は処理中に資産の特定部分の引き出しをするトレードシステムにおけるリスク見積をするためのTesterWithDrawal()関数使用について述べていきます。また、ストラテジーテスタにおける資産の引き出し計算のアルゴリズムへのこの関数の影響についても述べます。この関数はExpert Advisorsのパラメータ最適化に有用です。
母集団最適化アルゴリズム:蟻コロニー最適化(ACO)
今回は、蟻コロニー最適化アルゴリズムについて解析します。このアルゴリズムは非常に興味深く、複雑です。この記事では、新しいタイプのACOの作成を試みます。
MQL5 クックブック:オーバーフィットの影響低減とクオート不足への対処
どのようなトレーディング戦略を使っていようと、将来の収益を確保するためどのパラメータを選択すべきかという疑問は常にあるものです。本稿は同時に複数のシンボルパラメータを最適化する機能を備えたExpert Advisor 例を提供します。この方法はパラメータのオーバーフィットによる影響を軽減し、1個のシンボルからのデータが調査に十分でない場合に対処するものです。
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)
システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。
母集団最適化アルゴリズム:粒子群(PSO)
この記事では、一般的な粒子群最適化(PSO)アルゴリズムについて検討します。以前は、収束、収束率、安定性、スケーラビリティなどの最適化アルゴリズムの重要な特性について説明し、テストスタンドを開発し、最も単純なRNGアルゴリズムを検討しました。
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット
この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
PythonとMQL5を使用した取引戦略の自動パラメータ最適化
取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
MQL5の圏論(第16回):多層パーセプトロンと関手
本連載16回目となる今回は、関手と、それが人工ニューラルネットワークを使ってどのように実装できるかを見ていきます。当連載ではこれまで、ボラティリティを予測するというアプローチをとってきましたが、今回はポジションのエントリーとエグジットのシグナルを設定するためのカスタムシグナルクラスの実装を試みます。
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる
今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
市場シミュレーション(第1回):両建て注文(I)
本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント
この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。
Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式
ニュートン多項式は、数点の集合から二次方程式を作るもので、時系列を見るには古風だが興味深いアプローチです。この記事では、このアプローチをトレーダーがどのような面で役立てることができるかを探るとともに、その限界についても触れてみたいと思います。
一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。
バックテスト結果を改善するための生のコードの最適化と調整
MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。
MQL5の圏論(第15回):関手とグラフ
この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する
この記事では、ストラテジーテスターでの手動バックテストを簡単におこなうための、カスタムMQL5ツールキットの設計について紹介します。設計と実装に焦点を当て、特にインタラクティブな取引操作の仕組みについて詳しく解説します。その後、このツールキットを使って、戦略を効果的にテストする方法を実演します。
ニューラルネットワークの実験(第1回):幾何学の再検討
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索
ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。
初心者からエキスパートへ:ローソク足のプログラミング
この記事では、MQL5プログラミングの第一歩を、完全な初心者でも理解できるように解説します。よく知られているローソク足パターンを、実際に機能するカスタムインジケーターへと変換する方法を紹介します。ローソク足パターンは、実際の価格変動を反映し、市場の転換を示唆するため、非常に有用です。チャートを目視で確認してパターンを探す手法ではミスや非効率が生じやすいため、この記事では、パターンを自動的に識別・ラベル付けしてくれるインジケーターを作成する方法を説明します。その過程で、インデックス(索引)、時系列、ATR(市場の変動性に応じた精度向上のため)などの重要な概念についても解説し、今後のプロジェクトで再利用可能なカスタムローソク足パターンライブラリの開発にも触れていきます。
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
MQL5行列を使用した誤差逆伝播法によるニューラルネットワーク
この記事では、行列を使用してMQL5で誤差逆伝播法(バックプロパゲーション)アルゴリズムを適用する理論と実践について説明します。スクリプト、インジケータ、エキスパートアドバイザー(EA)の例とともに、既製のクラスが提示されます。
MQL5の圏論(第7回):多重集合、相対集合、添字集合
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
Frames Analyzerツールによるタイムトレード間隔の魔法
Frames Analyzerとは何でしょうか。これは、パラメータ最適化の直後に作成されたMQDファイルまたはデータベースを読み取ることにより、ストラテジーテスター内外でパラメータ最適化中に最適化フレームを分析するためのエキスパートアドバイザー(EA)のプラグインモジュールです。これらの最適化の結果はFrames Analyzerツールを使用している他のユーザーと共有して、結果について話し合うことができます。
ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。