MQL5言語でのテクニカル指標のプログラミングおよび使用に関する記事

icon

テクニカル指標はトレーディングの重要な部分を構成しており、それぞれのトレーダーは何か新しいものを見つけようとします。これらの記事の作者は計量経済学、機械学習、自動的なエリオットウェーブのマーキングやデジタルフィルタについて話します。古典的な分析方法から古典的アイデアの現代的な解釈まで、あらゆるものがあります。

カテゴリは、カスタムインディケータの開発方法を教え、ウィリアム・ブローのトレーディングアイデアを数学的に説明したすぐに使える独自のコレクションを含んだ記事を特集します。

新しい記事を追加
最新 | ベスト
preview
ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ポートフォリオの分散化と最適化とは、複数の資産に戦略的に投資を分散しながら、リスク調整後のパフォーマンス指標に基づいてリターンを最大化する理想的な資産配分を選定する手法です。
preview
知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

移動平均とストキャスティクスはよく使われるインジケーターで、前回の記事ではこの2つの組み合わせパターンを教師あり学習ネットワークで分析して、どのパターンが使えそうかを確認しました。今回はそこから一歩進めて、訓練済みネットワークに強化学習を組み合わせたらパフォーマンスにどんな影響があるかを見ていきます。テスト期間はかなり短いので、その点は踏まえておいてください。とはいえ、今回もMQL5ウィザードのおかげで、コード量はかなり少なくて済んでいます。
preview
知っておくべきMQL5ウィザードのテクニック(第57回):移動平均とストキャスティクスを用いた教師あり学習

知っておくべきMQL5ウィザードのテクニック(第57回):移動平均とストキャスティクスを用いた教師あり学習

移動平均線やストキャスティクスは非常に一般的なテクニカル指標ですが、その「遅行性」のために一部のトレーダーから敬遠されがちです。この3部構成のミニシリーズでは、機械学習の3つの主要なアプローチを軸に、この偏見が本当に正当なものなのか、それとも実はこれらの指標に優位性が隠れているのかを検証していきます。検証には、ウィザードで組み立てられたエキスパートアドバイザー(EA)を用います。
preview
知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル

知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル

ビル・ウィリアムズによるフラクタルは、最初にチャート上で目にしたときには見落とされがちな強力なインジケーターです。一見するとチャートが煩雑に見え、鋭さに欠けるように思えるかもしれません。この記事では、このインジケーターの覆いを取り払い、そのさまざまなパターンがどのように機能するのかを、MQL5ウィザードで組み上げたエキスパートアドバイザー(EA)によるフォワードウォークテストを通じて検証していきます。