MQL5言語でのテクニカル指標のプログラミングおよび使用に関する記事

icon

テクニカル指標はトレーディングの重要な部分を構成しており、それぞれのトレーダーは何か新しいものを見つけようとします。これらの記事の作者は計量経済学、機械学習、自動的なエリオットウェーブのマーキングやデジタルフィルタについて話します。古典的な分析方法から古典的アイデアの現代的な解釈まで、あらゆるものがあります。

カテゴリは、カスタムインディケータの開発方法を教え、ウィリアム・ブローのトレーディングアイデアを数学的に説明したすぐに使える独自のコレクションを含んだ記事を特集します。

新しい記事を追加
最新 | ベスト
preview
1世紀前の機能で取引戦略をアップデートする

1世紀前の機能で取引戦略をアップデートする

本記事では、ラーデマッヘル関数およびウォルシュ関数を取り上げます。これらの関数を金融時系列解析にどのように適用できるかを検討し、さらに取引におけるさまざまな応用例についても考察します。
preview
初心者からエキスパートへ:パラメータ制御ユーティリティ

初心者からエキスパートへ:パラメータ制御ユーティリティ

従来のEAやインジケーターの入力プロパティを、リアルタイムで操作可能なオンチャートのコントロールインターフェースへと変換することを想像してみてください。本記事は、これまでに取り組んできたMarket Periods Synchronizerインジケーターでの基礎的な成果を土台とし、上位足(HTF)の市場構造を可視化し、管理する手法を大きく進化させるものです。ここでは、その概念を完全にインタラクティブなユーティリティへと昇華させ、動的な操作性と強化されたマルチタイムフレーム(MTF)のプライスアクションの可視化を、チャート上に直接統合したダッシュボードとして実装します。この革新的なアプローチが、トレーダーとツールの関わり方をどのように変えていくのか、一緒に見ていきましょう。
preview
プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

世界中の市場セッションは1日の取引のリズムを形成しており、それらの重なりを理解することは、エントリーやエグジットのタイミングを見極めるうえで非常に重要です。本記事では、これらの世界的な取引時間をチャート上で視覚的に再現するインタラクティブな取引セッションEAを構築します。このEAは、アジア、東京、ロンドン、ニューヨークの各セッションを色分けされた矩形として自動的に描画し、各市場の開始と終了に応じてリアルタイムで更新します。また、チャート上のトグルボタン、動的な情報パネル、そしてライブのステータスやブレイクアウトメッセージを表示するスクロール式のティッカーヘッドラインも搭載しています。複数のブローカーでテストされたこのEAは、精度とデザイン性を兼ね備えており、ボラティリティの移行を視覚的に把握し、セッション間のブレイクアウトを特定し、グローバル市場の動きを常に意識したトレードを可能にします。
preview
迅速な取引判断を極める:実行麻痺を克服する

迅速な取引判断を極める:実行麻痺を克服する

UT BOT ATRトレーリングインジケーターは、個人向けにカスタマイズ可能なインジケーターであり、短期売買において素早い意思決定を好むトレーダー(スキャルパー)にとって非常に効果的です。また、長期取引をおこなうトレーダー(ポジショントレーダー)にとっても重要かつ非常に有効であることが実証されています。
preview
知っておくべきMQL5ウィザードのテクニック(第85回):ストキャスティクスとFrAMAのパターンを用いたβ-VAEによる推論

知っておくべきMQL5ウィザードのテクニック(第85回):ストキャスティクスとFrAMAのパターンを用いたβ-VAEによる推論

本記事は、ストキャスティクスとフラクタル適応型移動平均の組み合わせを紹介した「第84回」の続きです。今回は推論フェーズでの学習結果の活用に焦点を移し、前回の記事で取り上げた低調なパターンの成績を改善できるかどうかを検討します。ストキャスティクスとFrAMAは、モメンタムとトレンドを補完する関係にあります。推論フェーズでの学習結果の活用では、以前に考察したβ変分オートエンコーダ(β-VAE)のアルゴリズムを再度利用します。また、いつものように、MQL5ウィザードとの統合を目的として設計されたカスタムシグナルクラスの実装も継続します。
preview
プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

フィボナッチツールは、テクニカル分析で最も人気のあるツールのひとつです。本記事では、価格の動きに応じて動的に反応するリトレースメントおよびエクステンションレベルを描画し、リアルタイムアラート、スタイリッシュなライン、ニュース風のスクロールヘッドラインを提供するインタラクティブフィボナッチEAの作成方法をご紹介します。このEAのもうひとつの大きな利点は柔軟性です。チャート上で高値(A)と安値(B)のスイング値を直接入力できるため、分析したい価格範囲を正確にコントロールできます。
preview
知っておくべきMQL5ウィザードのテクニック(第84回):ストキャスティクスとFrAMAのパターンの使用 - 結論

知っておくべきMQL5ウィザードのテクニック(第84回):ストキャスティクスとFrAMAのパターンの使用 - 結論

ストキャスティクスとフラクタル適応型移動平均(FrAMA: Fractal Adaptive Moving Average)は、互いに補完し合う特性を持っており、MQL5のエキスパートアドバイザー(EA)で使えるインジケーターペアの1つです。この組合せについては前回の記事で紹介しましたが、今回はその締めくくりとして、残る5つのシグナルパターンを検討していきます。これらの検証にあたっては、これまでと同様にMQL5ウィザードを用いて構築およびテストをおこないます。
preview
MQL5入門(第24回):チャートオブジェクトで取引するEAの構築

MQL5入門(第24回):チャートオブジェクトで取引するEAの構築

本記事では、チャート上に描かれたサポートラインやレジスタンスラインを検出し、それに基づいて自動で取引を実行するエキスパートアドバイザー(EA)の作成方法を解説します。
preview
MQL5入門(第22回):5-0ハーモニックパターンを用いたエキスパートアドバイザーの構築

MQL5入門(第22回):5-0ハーモニックパターンを用いたエキスパートアドバイザーの構築

本記事では、MQL5において5-0ハーモニックパターンを検出して取引する方法、その妥当性をフィボナッチ比率で検証する方法、そしてチャート上に表示する方法について解説します。
preview
知っておくべきMQL5ウィザードのテクニック(第83回): ストキャスティクスとFrAMAのパターンの使用 - 行動アーキタイプ

知っておくべきMQL5ウィザードのテクニック(第83回): ストキャスティクスとFrAMAのパターンの使用 - 行動アーキタイプ

ストキャスティクスとフラクタル適応型移動平均(FrAMA: Fractal Adaptive Moving Average)は、互いに補完し合う特性を持っており、MQL5のエキスパートアドバイザー(EA)で使える指標ペアの1つです。ストキャスティクスはモメンタムの変化を捉えるために使用し、FrAMAは現在のトレンドを確認するために利用します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第82回):DQN強化学習でTRIXとWPRのパターンを使用する

知っておくべきMQL5ウィザードのテクニック(第82回):DQN強化学習でTRIXとWPRのパターンを使用する

前回の記事では、推論学習の枠組みにおける一目均衡表とADXの組み合わせを検証しました。本記事では、第68回で最後に取り上げたインジケーターの組み合わせ、すなわちTRIXとWilliams Percent Range (WPR)を対象に、強化学習を再度取り上げます。今回使用するアルゴリズムは、QR-DQN (Quantile Regression DQN)です。これまでと同様に、MQL5ウィザードでの実装を前提としたカスタムシグナルクラスとして提示します。
preview
知っておくべきMQL5ウィザードのテクニック(第81回): β-VAE推論学習で一目均衡表とADX-Wilderのパターンを利用する

知っておくべきMQL5ウィザードのテクニック(第81回): β-VAE推論学習で一目均衡表とADX-Wilderのパターンを利用する

本記事は第80回の続編です。前回は、強化学習フレームワーク下で一目均衡表とADXの組み合わせを検証しました。今回は焦点を推論学習に移します。一目均衡表とADXは前回も述べた通り補完的な指標ですが、今回は前回の記事で触れたパイプライン使用に関する結論を再検討します。推論学習には、変分オートエンコーダのβアルゴリズムを用います。また、MQL5ウィザードとの統合を目的として設計されたカスタムシグナルクラスの実装も継続します。
preview
プライスアクション分析ツールキットの開発(第43回):ローソク足の確率とブレイクアウト

プライスアクション分析ツールキットの開発(第43回):ローソク足の確率とブレイクアウト

MQL5ネイティブで開発されたCandlestick Probability EAは、ローソク足データをリアルタイムかつ銘柄別の確率情報へと変換する、軽量で実用的な分析ツールです。本EAは、バー確定時にピンバー、包み足、および十字線といったパターンを分類し、ATRを考慮したフィルタリングや、任意でブレイクアウト確認をおこないます。さらに、各パターンについて、純粋なフォロー率および出来高加重フォロー率を算出することで、特定の銘柄や時間足における典型的な結果を把握することが可能です。チャート上のマーカー、コンパクトなダッシュボード、インタラクティブな切り替え機能により、検証作業や分析対象への集中を容易にします。また、詳細なCSVログをエクスポートできるため、オフラインでの検証や追加分析にも対応しています。本EAを活用することで、確率プロフィールの構築、戦略の最適化をおこない、ローソク足パターン認識を定量的な優位性へと変換できます。
preview
プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

市場においてスピードと精度が重要である以上、分析ツールも市場と同じくらい賢くある必要があります。本記事では、ボタン操作に基づくエキスパートアドバイザー(EA)を紹介します。これは、価格データを瞬時に意味のある統計レベルに変換するインタラクティブなシステムです。ワンクリックで平均値、偏差、パーセンタイルなどを計算して表示し、複雑な分析をチャート上の明確なシグナルに変換します。価格が反発、押し戻し、または突破する可能性の高いゾーンをハイライトすることで、分析をより迅速かつ実用的にします。
preview
サイクルベースの取引システム(DPO)の構築と最適化の方法

サイクルベースの取引システム(DPO)の構築と最適化の方法

本記事では、MQL5におけるDPO(Detrended Price Oscillator、トレンド除去価格オシレーター)を用いた取引システムの設計および最適化手法について解説します。DPOのコアロジックを明確にし、長期トレンドを排除して短期サイクルを抽出する仕組みを示します。さらに、段階的な例とシンプルな戦略を通じて、インジケーターの実装方法、エントリー/エグジット条件の定義、そしてバックテストの実施方法について学ぶことができます。最後に、パフォーマンスを向上させ、市場環境の変化へ適応させるための実践的な最適化手法を紹介します。
preview
Market Sentimentインジケーターの自動化

Market Sentimentインジケーターの自動化

この記事では、市場の状況を強気、弱気、リスクオン、リスクオフ、中立(ニュートラル)に分類するMarket Sentimentカスタムインジケーターを自動化します。エキスパートアドバイザー(EA)は、現在の市場の傾向や方向性の分析プロセスを合理化しながら、一般的なセンチメントに関するリアルタイムの洞察を提供します。
preview
平均足を使ったプロフェッショナルな取引システムの構築(第2回):EAの開発

平均足を使ったプロフェッショナルな取引システムの構築(第2回):EAの開発

本記事では、MQL5を用いてプロフェッショナルな平均足ベースのエキスパートアドバイザー(EA)を開発する方法について解説します。入力パラメータ、列挙型、インジケーター、グローバル変数の設定方法から、コアとなる売買ロジックの実装までを順を追って説明します。また、開発したEAを金(ゴールド)でバックテストして、正しく動作するかどうかを検証する方法も学べます。
preview
Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーターは、パラボリックSARとATR(Average True Range、平均真の範囲)を統合した高度なテクニカル分析ツールです。前バージョンのParafracオシレーターではフラクタルを使用していたため、過去や現在のシグナルを覆い隠すようなスパイクが発生しやすいという課題がありました。Parafrac V2ではATRによるボラティリティ測定を活用することで、トレンドや反転、ダイバージェンスの検出をより滑らかで信頼性の高い方法で行えるようになり、チャートの混雑や分析の過負荷を軽減できます。
preview
カスタム口座パフォーマンス行列インジケーターの開発

カスタム口座パフォーマンス行列インジケーターの開発

このインジケーターは、口座エクイティ、損益、ドローダウンをリアルタイムで監視し、パフォーマンスダッシュボードとして可視化することで、規律の維持を促す役割を果たします。トレーダーが取引の一貫性を保ち、過剰取引を避け、自己勘定取引会社評価チャレンジ(プロップファームチャレンジ)のルールを遵守するための支援ツールとして機能します。
preview
プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

本記事では、各通貨ペアが持つ固有のアイデンティティを、その過去のプライスアクションという視点から探ります。生物の設計図を記述するDNAの概念に着想を得て、本記事では市場にも同様の枠組みを適用し、プライスアクションを各通貨ペアのDNAとして扱います。ボラティリティ、スイング、リトレースメント、スパイク、セッション特性といった構造的挙動を分解することで、各ペアを他と区別する基礎的なプロファイルが浮かび上がります。このアプローチにより、市場行動に対するより深い洞察が得られ、トレーダーは各銘柄の特性に合った戦略を体系的に組み立てられるようになります。
preview
カスタム市場センチメント指標の開発

カスタム市場センチメント指標の開発

本記事では、複数の時間足を用いて市場センチメントを判定し、強気、弱気、リスクオン、リスクオフ、中立のいずれかに分類するMarket Sentimentカスタムインジケーターの開発について解説します。多時間足分析を組み合わせることで、トレーダーは市場全体の偏りと短期的な動向をより明確に把握できるようになります。
preview
プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

本記事では、フラクタルピボットを実用的な市場構造シグナルへ変換する、コンパクトなMQL5システム「Fractal Reaction System」を紹介します。リペイントを回避するために確定バーのロジックを用い、EAはChoCH (Change-of-Character)警告を検出し、BOS (Break-of-Structure)を確定させ、永続的なチャートオブジェクトを描画し、すべての確定イベントをログ出力してアラート(デスクトップ、モバイル、サウンド)します。アルゴリズム設計、実装上の注意点、テスト結果、そしてEAコード全文を順に解説し、読者ご自身でコンパイル、テスト、展開できるようにします。
preview
平均足を使ったプロフェッショナルな取引システムの構築(第1回):カスタムインジケーターの開発

平均足を使ったプロフェッショナルな取引システムの構築(第1回):カスタムインジケーターの開発

本記事は、MQL5でカスタムインジケーターを作成するための実践的なスキルとベストプラクティスを解説する、2部構成シリーズの第1回目です。この記事では平均足を題材として、平均足チャートの理論、平均足の計算方法、そしてテクニカル分析への応用を順に紹介します。中心となるのは、完全に機能する平均足インジケーターをゼロから構築するためのステップバイステップガイドであり、各コードの意図を理解できるように丁寧な説明を加えています。この基礎知識は、第2回で取り組む「平均足ロジックを用いたエキスパートアドバイザーの構築」へとつながります。
preview
チャート同期でテクニカル分析を簡単にする

チャート同期でテクニカル分析を簡単にする

「Chart Synchronization for Easier Technical Analysis」は、単一の銘柄に対してすべてのチャート時間足でトレンドライン、四角形、インジケーターなどの一貫したグラフィックオブジェクトが表示されるようにするツールです。パン、ズーム、銘柄変更などの操作はすべての同期したチャートに反映されるため、トレーダーは複数の時間足で同じプライスアクションの文脈をシームレスに確認し、比較できます。
preview
プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

市場センチメントは、価格変動に影響を与える要因の中でも最も見落とされがちでありながら強力な要因のひとつです。多くのトレーダーが遅行指標や経験則に頼る中、Sentiment Tilt Meter (STM) EAは生の市場データを明確で視覚的なガイダンスへと変換し、市場が強気、弱気、中立のどちらへ傾いているのかをリアルタイムで示します。これにより、エントリーの根拠を確認し、ダマシを回避し、市場参加のタイミングをより適切に図りやすくなります。
preview
Parafracオシレーター:パラボリックとフラクタルインジケーターの組み合わせ

Parafracオシレーター:パラボリックとフラクタルインジケーターの組み合わせ

パラボリックSARとフラクタルインジケーターを組み合わせて、新しいオシレーターベースのインジケーターを作成する方法について説明します。両ツールの独自の強みを統合することにより、トレーダーはより洗練された効果的な取引戦略の開発を目指すことができます。
preview
プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

MetaTrader 5ターミナルの潜在能力を最大限に引き出すために、Pythonのデータサイエンスエコシステムと公式のMetaTrader 5クライアントライブラリを活用する方法を紹介します。本記事では、認証をおこない、ライブティックおよび分足データを直接Parquetストレージにストリーミングする手法を解説し、taやProphetを用いた高度な特徴量エンジニアリングをおこない、時間依存型の勾配ブースティングモデルを学習させる方法を示します。その後、軽量なFlaskサービスを展開して、リアルタイムで取引シグナルを提供します。ハイブリッドクオンツフレームワークを構築する場合でも、エキスパートアドバイザー(EA)に機械学習を組み込む場合でも、データ駆動型アルゴリズム取引のための堅牢なエンドツーエンドパイプラインを習得できます。
preview
知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化

知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化

本記事では、ゲーターオシレーターとA/Dオシレーターを用いた取引の体系的アプローチの後半部分を紹介します。新たに5つのパターンを導入することで、偽の動きをフィルタリングし、早期の反転を検出し、時間軸をまたいでシグナルを整合させる方法を示します。明確なコーディング例とパフォーマンステストを通じて、この資料は理論と実践をMQL5開発者向けに橋渡ししています。
preview
知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

ビル・ウィリアムズが開発したゲーターオシレーター(Gator Oscillator)とA/Dオシレーター(Accumulation/Distribution Oscillator)は、MQL5のエキスパートアドバイザー(EA)内で調和的に活用できるインジケーターペアの一例です。ゲーターオシレーターはトレンドを確認するために使用し、A/Dオシレーターは出来高を通じてそのトレンドを検証する補助指標として機能します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

前回の記事では、オーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)のインディケーターの組み合わせを紹介しましたが、今回はこのペアリングを教師あり学習でどのように強化できるかを見ていきます。Awesome OscillatorとEnvelope Channelは、トレンドの把握とサポート/レジスタンスの補完的な組み合わせです。私たちの教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を使用し、ドット積カーネルとクロスタイムアテンションを活用してカーネルとチャネルのサイズを決定します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
preview
取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点

取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点

本記事では、価格変動をバイナリコードに変換するという新しい視点からテクニカル分析にアプローチします。筆者は、シンプルな値動きから複雑な市場パターンに至るまで、あらゆる市場行動を「0」と「1」のシーケンスとして符号化できることを示します。
preview
取引におけるトレンド基準

取引におけるトレンド基準

トレンドは多くの取引戦略において重要な要素です。本記事では、トレンドを識別するために使用されるいくつかのツールとその特性にを見ていきます。トレンドを理解し正しく解釈することは、取引効率を大幅に高め、リスクを最小限に抑えることにつながります。
preview
高度なICT取引システムの開発:オーダーブロックインジケーターでのシグナルの実装

高度なICT取引システムの開発:オーダーブロックインジケーターでのシグナルの実装

この記事では、板情報(オーダーブックの数量)に基づいてオーダーブロックインジケーターを開発し、バッファを使用して最適化し、精度を向上させる方法を学習します。これにより、プロジェクトの現段階が終了し、リスク管理クラスとインジケーターによって生成されたシグナルを使用する取引ボットの実装を含む次の段階の準備が整います。
preview
知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

ビル・ウィリアムズによるオーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)は、MQL5のエキスパートアドバイザー(EA)内で補完的に使用できる組み合わせです。AOはトレンドを検出する能力を持つためこれを利用し、一方でエンベロープチャネルはサポートおよびレジスタンスレベルを定義する目的で組み込みます。本記事は、このインジケーターの組み合わせを探求するにあたり、MQL5ウィザードを用いて両者が持つ可能性を構築および検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第73回):一目均衡表とADX-Wilderのパターンの利用

知っておくべきMQL5ウィザードのテクニック(第73回):一目均衡表とADX-Wilderのパターンの利用

一目均衡表とADX-Wilderオシレーターは、MQL5のエキスパートアドバイザー(EA)内で補完的に使用できる組み合わせです。一目均衡表は多機能な指標ですが、本記事では主にサポート・レジスタンス(S/R)レベルを定義する目的で使用します。一方、ADXはトレンドの判定に使用します。通常通り、MQL5ウィザードを用いて構築し、両者が持つ潜在能力をテストします。
preview
プライスアクション分析ツールキットの開発(第28回):Opening Range Breakout Tool

プライスアクション分析ツールキットの開発(第28回):Opening Range Breakout Tool

各取引セッションの始まりでは、市場の方向性の偏りは、価格が初期価格幅(オープニングレンジ)を突破して初めて明確になります。本記事では、MQL5エキスパートアドバイザー(EA)を構築し、セッション開始直後の初期価格幅のブレイクアウトを自動的に検出して分析し、タイムリーでデータ駆動型のシグナルを提供して自信ある日中エントリーを可能にする方法を探ります。
preview
知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

移動平均収束拡散法(MACD)オシレーターとオンバランスボリューム(OBV)オシレーターは、MQL5のエキスパートアドバイザー(EA)内で併用できるもう一つの指標ペアです。本連載における慣例どおり、この組み合わせも補完関係にあり、MACDがトレンドを確認し、OBVが出来高を検証します。MQL5ウィザードを用いて、この2つが持つ潜在力を構築、検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第70回): 指数カーネルネットワークにおけるSARとRVIのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第70回): 指数カーネルネットワークにおけるSARとRVIのパターンの使用

前回の記事では、SARとRVIのインジケーターペアを紹介しました。今回は、このインジケーターペアを機械学習によってどのように拡張できるかを検討します。SARとRVIは、それぞれトレンドとモメンタムを補完し合う関係にあります。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、カーネルとチャネルのサイズを指数関数的に拡大・調整することで、このインジケーターペアの予測を微調整します。この処理は、常にMQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内でおこなわれます。
preview
知っておくべきMQL5ウィザードのテクニック(第69回):SARとRVIのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第69回):SARとRVIのパターンの使用

パラボリックSAR (SAR)と相対活力指数(RVI)は、MQL5のエキスパートアドバイザー(EA)内で併用可能なもう一つのインジケーターペアです。このインジケーターペアは、これまでに取り上げたものと同様に補完的で、SARはトレンドを定義し、RVIはモメンタムを確認します。通常通り、MQL5ウィザードを使用してこのインジケーターペアリングを構築し、その可能性をテストします。
preview
知っておくべきMQL5ウィザードのテクニック(第68回): コサインカーネルネットワークでTRIXとWPRのパターンを使用する

知っておくべきMQL5ウィザードのテクニック(第68回): コサインカーネルネットワークでTRIXとWPRのパターンを使用する

前回の記事では、TRIXとWilliams Percent Range (WPR)の指標ペアを紹介しましたが、今回はこの指標ペアを機械学習で拡張する方法について検討します。TRIXとWPRは、トレンド指標とサポート/レジスタンス補完ペアとして組み合わせられます。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、予測精度を微調整する際にコサインカーネルをアーキテクチャに組み込んでいます。これは常に、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内で行われます。。