
Über das Finden von zeitlicher Mustern im Devisenmarkt mit dem CatBoost-Algorithmus
Der Artikel befasst sich mit dem Erstellen von Machine-Learning-Modellen mit Zeitfiltern und diskutiert die Effektivität dieses Ansatzes. Der menschliche Faktor kann nun eliminiert werden, indem das Modell einfach angewiesen wird, zu einer bestimmten Stunde an einem bestimmten Wochentag zu handeln. Die Mustersuche kann durch einen separaten Algorithmus bereitgestellt werden.


Der Markt und die Physik seiner globalen Muster
In diesem Artikel werde ich versuchen, die Annahme zu testen, dass jedes System mit auch nur einem kleinen Verständnis des Marktes auf globaler Ebene funktionieren kann. Ich werde keine Theorien oder Muster erfinden, sondern nur bekannte Fakten verwenden und diese Fakten schrittweise in die Sprache der mathematischen Analyse übersetzen.


Entwicklung eines selbstanpassenden Algorithmus (Teil I): Finden eines Grundmusters
In der kommenden Artikelserie werde ich die Entwicklung von selbstanpassenden Algorithmen unter Berücksichtigung der meisten Marktfaktoren demonstrieren, sowie zeigen, wie man diese Situationen systematisiert, in Logik beschreibt und in seiner Handelsaktivität berücksichtigt. Ich werde mit einem sehr einfachen Algorithmus beginnen, der sich nach und nach die Theorie aneignet und sich zu einem sehr komplexen Projekt entwickelt.


Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks
Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren Tick angekommen sind.

Ein manuelles Chart- und Handelswerkzeug (Teil II). Werkzeuge zum Zeichnen von Chart-Grafiken
Dies ist der nächste Artikel der Serie, in dem ich zeige, wie ich eine komfortable Bibliothek für die manuelle Anwendung von Chart-Grafiken unter Verwendung von Tastaturkürzeln erstellt habe. Zu den verwendeten Werkzeugen gehören gerade Linien und deren Kombinationen. In diesem Teil sehen wir uns an, wie die Zeichenwerkzeuge unter Verwendung der im ersten Teil beschriebenen Funktionen angewendet werden. Die Bibliothek kann mit jedem Expert Advisor oder Indikator verbunden werden, was die Aufgaben im Chart stark vereinfacht. Diese Lösung verwendet KEINE externen Dlls, während alle Befehle mit eingebauten MQL-Tools implementiert werden.

Neuronale Netze leicht gemacht (Teil 7): Adaptive Optimierungsverfahren
In früheren Artikeln haben wir den stochastischen Gradientenabstieg verwendet, um ein neuronales Netzwerk mit der gleichen Lernrate für alle Neuronen innerhalb des Netzwerks zu trainieren. In diesem Artikel schlage ich vor, sich mit adaptiven Lernmethoden zu beschäftigen, die eine Änderung der Lernrate für jedes Neuron ermöglichen. Wir werden auch die Vor- und Nachteile dieses Ansatzes betrachten.


Analysieren von Charts mit den Level von DeMark Sequential und Murray-Gann
Thomas DeMark Sequential ist gut darin, Gleichgewichtsänderungen in der Preisbewegung anzuzeigen. Dies wird besonders deutlich, wenn wir seine Signale mit einem Pegelindikator, zum Beispiel Murray-Levels, kombinieren. Der Artikel ist vor allem für Anfänger und diejenigen gedacht, die ihren "Gral" noch nicht gefunden haben. Ich werde auch einige Merkmale der Levelbildung zeigen, die ich in anderen Foren nicht gesehen habe. So wird der Artikel wahrscheinlich auch für fortgeschrittene Händler nützlich sein... Anregungen und vernünftige Kritik sind willkommen...

Gradient Boosting beim transduktiven und aktiven maschinellen Lernen
In diesem Artikel werden wir aktive Methoden des maschinellen Lernens anhand von realen Daten betrachten und ihre Vor- und Nachteile diskutieren. Vielleicht helfen Ihnen diese Methoden und Sie werden sie in Ihr Arsenal an maschinellen Lernmodellen aufnehmen. Die Transduktion wurde von Vladimir Vapnik eingeführt, der Miterfinder der Support-Vector Machine (SVM) ist.

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt
In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten von Indikatorobjekten in EAs zu erhalten.


Optimale Vorgehensweise für Entwicklung und Analyse von Handelssystemen
In diesem Artikel zeige ich Ihnen die Kriterien, die Sie bei der Auswahl eines Systems oder Signals für die Investition Ihrer Gelder berücksichtigen sollten. Außerdem beschreibe ich die optimale Vorgehensweise bei der Entwicklung von Handelssystemen und zeige auf, wie wichtig diese Angelegenheit im Forex-Handel ist.

Praktische Anwendung von neuronalen Netzen im Handel. Python (Teil I)
In diesem Artikel werden wir die schrittweise Implementierung eines Handelssystems analysieren, das auf der Programmierung von tiefen neuronalen Netzen in Python basiert. Dies wird unter Verwendung der von Google entwickelten TensorFlow-Bibliothek für maschinelles Lernen durchgeführt. Außerdem werden wir die Keras-Bibliothek zur Beschreibung von neuronalen Netzen verwenden.

Zeitreihen in der Bibliothek DoEasy (Teil 55): Die Kollektionsklasse der Indikatoren
Der Artikel setzt die Entwicklung von Objektklassen für die Indikatoren und deren Kollektionen fort. Für jedes Indikatorobjekt erstellen wir seine Beschreibung und die richtige Kollektionsklasse für die fehlerfreie Speicherung und das Abrufen von Indikatorobjekten aus der Kollektionsliste.

Neuronale Netze leicht gemacht (Teil 5): Parallele Berechnungen mit OpenCL
Wir haben bereits einige Arten von Implementierungen neuronaler Netze besprochen. In den betrachteten Netzwerken werden die gleichen Operationen für jedes Neuron wiederholt. Ein logischer weiterer Schritt ist die Nutzung der parallelen Berechnung, die die moderne Technologie bietet, um den Lernprozess des neuronalen Netzwerks zu beschleunigen. Eine der möglichen Implementierungen wird in diesem Artikel beschrieben.

Zeitreihen in der Bibliothek DoEasy (Teil 54): Abgeleitete Klassen des abstrakten Basisindikators
Der Artikel betrachtet das Erstellen von Klassen von abgeleiteten Objekten des abstrakten Basisindikators. Solche Objekte ermöglichen den Zugriff auf die Funktionen der Erstellung von Indikator-EAs, das Sammeln und Abrufen von Datenwertstatistiken verschiedener Indikatoren und Preise. Außerdem wird eine Kollektion von Indikatorobjekten erstellt, von der aus der Zugriff auf die Eigenschaften und Daten jedes im Programm erstellten Indikators möglich sein wird.

Neuronale Netze leicht gemacht (Teil 4): Rekurrente Netze
Wir setzen unser Studium der Welt der Neuronalen Netze fort. In diesem Artikel werden wir einen anderen Typ der Neuronalen Netzen betrachten, nämlich die Rekurrenten Netze. Dieser Typ wird für die Verwendung mit Zeitreihen vorgeschlagen, die in der Handelsplattform MetaTrader 5 durch Preisdiagramme dargestellt werden.


Grid und Martingale: was sind sie und wie verwendet man sie?
In diesem Artikel werde ich versuchen, im Detail zu erklären, was Grid und Martingale sind, sowie was sie gemeinsam haben. Außerdem werde ich versuchen zu analysieren, wie praktikabel diese Strategien wirklich sind. Der Artikel enthält mathematische und praktische Teile.

Brute-Force-Ansatz zur Mustersuche
In diesem Artikel werden wir nach Marktmustern suchen, Expert Advisors basierend auf den identifizierten Mustern erstellen und prüfen, wie lange diese Muster gültig bleiben, wenn sie überhaupt ihre Gültigkeit behalten.

Zeitreihen in der Bibliothek DoEasy (Teil 53): Abstrakte Basisklasse der Indikatoren
Der Artikel beschäftigt sich mit dem Erstellen eines abstrakten Indikators, der im Weiteren als Basisklasse für die Erstellung von Objekten der Standard- und nutzerdefinierten Indikatoren der Bibliothek verwendet wird.

Zeitreihen in der Bibliothek DoEasy (Teil 52): Plattformübergreifende Eigenschaft für Standardindikatoren mit einem Puffer für mehrere Symbole und Perioden
In diesem Artikel wird das Erstellen des Standardindikators Akkumulation/Distribution mehrere Symbole und Perioden behandelt. Wir verbessern die Bibliotheksklassen in Bezug auf die Indikatoren ein wenig, damit die für die veraltete Plattform MetaTrader 4 entwickelten Programme, die auf dieser Bibliothek basieren, beim Umstieg auf MetaTrader 5 normal funktionieren können.

Neuronale Netze leicht gemacht (Teil 3): Convolutional Neurale Netzwerke
Als Fortsetzung des Themas Neuronale Netze schlage ich vor, Convolutional Neurale Netzwerke (faltende Neuronale Netzwerke) zu besprechen. Diese Art von Neuronalen Netzwerken wird in der Regel für die Analyse von visuellen Bildern verwendet. In diesem Artikel werden wir die Anwendung dieser Netzwerke auf den Finanzmärkten besprechen.


Grundlegende Mathematik hinter dem Forex-Handel
Der Artikel zielt darauf ab, die Hauptmerkmale des Forex-Handels so einfach und schnell wie möglich zu beschreiben sowie einige grundlegende Ideen mit Anfängern zu beschreiben. Er versucht auch, die quälendsten Fragen in der Trading-Community zu beantworten und zeigt die Entwicklung eines einfachen Indikators.

Fortschrittliches Resampling und Auswahl von CatBoost-Modellen durch die Brute-Force-Methode
Dieser Artikel beschreibt einen der möglichen Ansätze zur Datentransformation mit dem Ziel, die Verallgemeinerbarkeit des Modells zu verbessern, und erörtert auch die Stichprobenziehung und Auswahl von CatBoost-Modellen.

Zeitreihen in der Bibliothek DoEasy (Teil 51): Zusammengesetzte Standardindikatoren für mehrere Symbole und Perioden
Der Artikel vervollständigt die Entwicklung von Objekten der Standardindikatoren für mehrere Symbole und Perioden. Anhand des Standardindikators Ichimoku Kinko Hyo analysieren wir beispielsweise die Erstellung von zusammengesetzten, nutzerdefinierten Indikatoren, die über gezeichnete Hilfspuffer zur Anzeige von Daten auf dem Chart verfügen.


Ein wissenschaftlicher Ansatz für die Entwicklung von Handelsalgorithmen
Der Artikel befasst sich mit der Methodik zur Entwicklung von Handelsalgorithmen, bei der ein konsistenter, wissenschaftlicher Ansatz zur Analyse möglicher Kursmuster und zur Erstellung von Handelsalgorithmen auf der Grundlage dieser Muster verwendet wird. Die Entwicklungsideale werden anhand von Beispielen demonstriert.

Der Algorithmus CatBoost von Yandex für das maschinelle Lernen, Kenntnisse von Python- oder R sind nicht erforderlich
Der Artikel liefert den Code und die Beschreibung der wichtigsten Phasen des maschinellen Lernprozesses anhand eines konkreten Beispiels. Um das Modell zu entwickeln, benötigen Sie keine Kenntnisse von Python- oder R. Es reichen grundlegende MQL5-Kenntnisse aus — das ist genau mein Niveau. Daher hoffe ich, dass der Artikel als gutes Tutorial für ein breites Publikum hilft, um diejenigen zu unterstützen, die daran interessiert sind, Fähigkeiten des maschinellen Lernens zu evaluieren und in ihre Programme zu implementieren.

Neuronale Netze leicht gemacht (Teil 2): Netzwerktraining und Tests
In diesem zweiten Artikel werden wir uns weiter mit Neuronalen Netzen befassen und ein Beispiel für die Verwendung unserer geschaffenen Klasse CNet in Expert Advisors besprechen. Wir werden mit zwei Modellen neuronaler Netze arbeiten, die ähnliche Ergebnisse sowohl hinsichtlich der Trainingszeit als auch der Vorhersagegenauigkeit zeigen.


Was ist ein Trend und basiert die Marktstruktur auf einem Trend oder einer Seitwärtsbewegung?
Händler sprechen oft über Trends und Seitwärtsbewegungen (flat), aber nur sehr wenige von ihnen verstehen wirklich, was ein Trend/eine Seitwärtsbewegung wirklich ist, und noch weniger sind in der Lage, diese Konzepte klar zu erklären. Die Diskussion dieser Grundbegriffe ist oft mit einer Reihe von Vorurteilen und Missverständnissen behaftet. Wenn wir jedoch Gewinn erzielen wollen, müssen wir die mathematische und logische Bedeutung dieser Konzepte verstehen. In diesem Artikel werde ich einen genaueren Blick auf das Wesen von Trend und Seitwärtsbewegung werfen und versuchen zu definieren, ob die Marktstruktur auf Trend, Seitwärtsbewegung oder etwas anderem basiert. Ich werde auch die optimalsten Strategien zur Gewinnerzielung auf Trend- und flachen Märkten besprechen.


Verwendung von Kryptographie mit externen Anwendungen
In diesem Artikel betrachten wir die Ver-/Entschlüsselung von Objekten im MetaTrader und in externen Anwendungen. Unser Ziel ist es, die Bedingungen zu bestimmen, unter denen die gleichen Ergebnisse mit den gleichen Ausgangsdaten erzielt werden.

Gradient Boosting (CatBoost) für die Entwicklung von Handelssystemen. Ein naiver Zugang
Trainieren des Klassifikators CatBoost in Python und Exportieren des Modells nach mql5, sowie Parsen der Modellparameter und eines nutzerdefinierten Strategietesters. Die Python-Sprache und die MetaTrader 5-Bibliothek werden zur Vorbereitung der Daten und zum Training des Modells verwendet.


Zeitreihen in der Bibliothek DoEasy (Teil 47): Standardindikatoren für mehrere Symbole und Perioden
In diesem Artikel beginne ich mit der Entwicklung von Methoden für die Arbeit mit Standardindikatoren, die letztlich die Erstellung von Multisymbol- und Mehrperioden-Standardindikatoren auf der Grundlage von Bibliotheksklassen ermöglichen werden. Außerdem werde ich das Ereignis "fehlende Balken" (skipped bars) zu den Zeitreihenklassen hinzufügen und die übermäßige Belastung des Hauptprogrammcodes beseitigen, indem ich die Bibliotheksvorbereitungsfunktionen in die Klasse CEngine verlege.


Zeitreihen in der Bibliothek DoEasy (Teil 46): Mehrperioden-Multisymbol-Indikatorpuffer
In diesem Artikel werde ich die Klassen der Objekte der Indikatorpuffer verbessern, um im Multisymbolmodus arbeiten zu können. Dies wird den Weg für die Erstellung von Multisymbol- und Mehrperioden-Indikatoren in benutzerdefinierten Programmen ebnen. Ich werde den berechneten Pufferobjekten die fehlende Funktionalität hinzufügen, die es uns ermöglicht, multisymbol- und mehrperiodische Standardindikatoren zu erstellen.


Zeitreihen in der Bibliothek DoEasy (Teil 45): Puffer für Mehrperiodenindikator
In diesem Artikel werde ich mit der Verbesserung der Indikatorpufferobjekte und der Sammelklasse für die Arbeit in Mehrperioden- und Mehrsymbolmodi beginnen. Ich werde den Betrieb von Pufferobjekten für den Empfang und die Anzeige von Daten aus einem beliebigen Zeitrahmen auf dem aktuellen Symbolchart bespreche.

Praktische Anwendung von neuronalen Netzen im Handel Es wird Zeit zum Üben
Der Artikel enthält eine Beschreibung und Anleitungen für den praktischen Einsatz von Modulen für neuronale Netzwerke auf der Matlab-Plattform. Er behandelt auch die Hauptaspekte der Erstellung eines Handelssystems unter Verwendung des Neuronalen Netzwerkmoduls. Um den Komplex in einem Artikel vorstellen zu können, musste ich ihn so modifizieren, dass mehrere Funktionen des neuronalen Netzwerkmoduls in einem Programm kombiniert werden konnten.


Praktische Anwendung von neuronalen Netzen im Handel
In diesem Artikel werden wir die Hauptaspekte der Integration von neuronalen Netzen und dem Handelsterminal betrachten, mit dem Ziel, einen voll ausgestatteten Handelsroboter zu schaffen.


Zeitreihen in der Bibliothek DoEasy (Teil 42): Abstrakte Objektklasse der Indikatorpuffer
In diesem Artikel beginnen wir mit der Entwicklung der Indikatorpufferklassen für die DoEasy-Bibliothek. Wir werden die Basisklasse des abstrakten Puffers erstellen, die als Grundlage für die Entwicklung verschiedener Klassentypen von Indikatorpuffern verwendet werden soll.


Entwicklung eines plattformübergreifenden Grid-EAs: Testen eines Mehrwährungs-EA
Die Märkte brachen innerhalb eines Monats um mehr als 30% ein. Dies scheint der beste Zeitpunkt für die Prüfung von Expertenberatern mit Grid- und Martingal-Basis zu sein. Dieser Artikel ist eine ungeplante Fortsetzung der Serie "Entwicklung eines plattformübergreifenden Grid-EAs". Der aktuelle Markt bietet eine Gelegenheit, einen Stresstest für den Grid-EA zu arrangieren. Lassen Sie uns also diese Gelegenheit nutzen und unseren Expert Advisor testen.


Zeitreihen in der Bibliothek DoEasy (Teil 40): Bibliotheksbasierte Indikatoren - Aktualisierung der Daten in Echtzeit
Der Artikel befasst sich mit der Entwicklung eines einfachen Mehrperiodenindikators auf der Grundlage der DoEasy-Bibliothek. Wir verbessern die Klasse der Zeitreihen so, dass sie Daten aus beliebigen Zeitrahmen empfangen können, um sie in der aktuellen Diagrammperiode anzuzeigen.


Zeitreihen in der Bibliothek DoEasy (Teil 39): Bibliotheksbasierte Indikatoren - Vorbereitung der Daten und Zeitreihen
Der Artikel befasst sich mit der Anwendung der DoEasy-Bibliothek zur Erstellung von Mehrsymbol- und Mehrperiodenindikatoren. Wir werden die Bibliotheksklassen auf die Arbeit mit Indikatoren vorbereiten und die Erstellung von Zeitreihen testen, die als Datenquellen in Indikatoren verwendet werden können. Wir werden auch das Erstellen und Versenden von Zeitreihen-Ereignissen implementieren.


Zeitreihen in der Bibliothek DoEasy (Teil 38): Kollektion von Zeitreihen - Aktualisierungen in Echtzeit und Datenzugriff aus dem Programm
Der Artikel befasst sich mit der Echtzeit-Aktualisierung von Zeitreihendaten und dem Senden von Meldungen über das Ereignis "New bar" an die Kontrollprogramm auf dem Chart aus allen Zeitreihen aller Symbole, um diese Ereignisse in benutzerdefinierten Programmen handhaben zu können. Die Klasse "New tick" wird verwendet, um die Notwendigkeit der Aktualisierung der Zeitreihen von Symbolen und Perioden zu bestimmen, die nicht dem aktuellen Chart entsprechen.


Zeitreihen in der Bibliothek DoEasy (Teil 37): Kollektion von Zeitreihen - Datenbank der Zeitreihen nach Symbolen und Zeitrahmen
Der Artikel befasst sich mit der Entwicklung der Zeitreihenkollektion spezifizierter Zeitrahmen für alle im Programm verwendeten Symbole. Wir werden die Zeitreihenkollektion, die Methoden zur Parametereinstellung der Zeitreihenkollektion und das anfängliche Ausfüllen der entwickelten Zeitreihen mit historischen Daten erstellen.