
交易中的神经网络:具有相对编码的变换器
自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)
在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。

从基础到中级:数组和字符串(二)
在本文中,我将展示,尽管我们仍处于编程的一个非常基本的阶段,但我们已经可以实现一些有趣的应用程序。在这种情况下,我们将创建一个相当简单的密码生成器。通过这种方式,我们将能够应用到目前为止已经解释过的一些概念。此外,我们将研究如何为一些具体问题制定解决方案。

Connexus观察者模式(第8部分):添加一个观察者请求
在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。

原子轨道搜索(AOS)算法:改进与拓展
在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。

Connexus客户端(第七部分):添加客户端层
在本文中,我们将继续开发connexus库。在本章节中,我们将构建CHttpClient类,该类负责发送请求并接收指令。我们还将介绍模拟对象(mocks)的概念,让该库与WebRequest函数解耦,从而为用户提供更强大的灵活性。

开发回放系统(第 67 部分):完善控制指标
在本文中,我们将看看通过一点代码改进可以实现什么。这一改进旨在简化我们的代码,更多地使用 MQL5 库调用,最重要的是,使其在我们未来可能开发的其他项目中更加稳定、安全和易于使用。

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器
ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。

从Python到MQL5:量子启发式交易系统的探索之旅
本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。

在MQL5中创建交易管理员面板(第六部分):多功能界面(一)
交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。

从基础到中级:数组和字符串(一)
在今天的文章中,我们将开始探索一些特殊的数据类型。首先,我们将定义什么是字符串,并解释如何使用一些基本过程。这将使我们能够处理这类数据,这可能很有趣,尽管有时对初学者来说有点困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

交易中的神经网络:受控分段(终章)
我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。

使用MQL5经济日历进行交易(第二部分):创建新闻交易面板
在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。

重构经典策略(第十一部分)移动平均线的交叉(二)
移动平均线和随机振荡器可用于生成趋势跟踪交易信号。然而,这些信号只有在价格行为发生之后才会被观察到。我们可以有效地利用人工智能克服技术指标中这种固有的滞后性。本文将教您如何创建一个完全自主的人工智能驱动型EA,这种方式可以改进您现有的任何交易策略。即使是最古老的交易策略也可以被改进。

基于Python和MQL5的特征工程(第二部分):价格角度
在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络
“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。

开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择
让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。

交易中的神经网络:广义 3D 引用表达分段
在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。

让新闻交易轻松上手(第五部分):执行交易(2)
本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。

基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法
传统的机器学习教导从业者要警惕不要使模型陷入过度拟合。然而,这种观念正受到哈佛大学研究人员最新发表的学术见解的挑战。他们发现,看似过拟合的情形在某些情况下可能是由于提前终止训练过程导致的。我们将展示如何利用研究论文中发表的观点,来改进我们使用人工智能预测市场行为的方式。

开发回放系统(第 66 部分):玩转服务(七)
在本文中,我们将实现第一个解决方案,该解决方案使我们能够确定何时在图表上出现新的柱形。此解决方案适用于各种情况。了解它的发展将有助于你掌握几个重要方面。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线
移动平均线无疑是我们的 AI 模型进行预测的最佳指标。然而,我们可以通过严谨数据变换来进一步提高其准确性。本文将展示如何构建能够预测更远范围的AI模型,超越您目前所实现的水平,同时不会显著降低准确率。移动平均线的实用性确实令人惊叹。

在 HarmonyOS NEXT 上安装 MetaTrader 5 和其他 MetaQuotes 应用程序
使用卓易通在 HarmonyOS NEXT 设备上轻松安装 MetaTrader 5 和其他 MetaQuotes 应用程序。为您的手机或笔记本电脑提供详细的分步指南。

数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)
在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。

Connexus请求解析(第六部分):创建HTTP请求与响应
在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。

从基础到中级:FOR 语句
在本文中,我们将了解 FOR 语句最基本的概念。了解这里将显示的所有内容非常重要。与我们迄今为止讨论的其他语句不同,FOR 语句有一些怪癖,很快就会变得非常复杂。所以不要让这样的事情堆积起来,尽快开始学习和练习。

交易中的神经网络:免掩码注意力方式预测价格走势
在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。

价格行为分析工具包开发(第一部分):图表投影仪
本项目旨在利用 MQL5 程序算法为 MetaTrader 5 开发一套全面的分析工具。这些工具包括脚本、指标、人工智能模型以及EA,能够自动地进行市场分析。在某些情况下,这些工具能够完全无需人工干预地进行高级分析,并将预测结果发送到相应的平台。绝不会错过任何机会。请与我一同探索构建一套强大的自定义市场分析工具箱。我们将从开发一个简单的 MQL5 程序开始,我将其命名为“图表投影仪”。

从基础到中级:按值传递还是按引用传递
在本文中,我们将实际了解按值传递和按引用传递之间的区别。虽然这看起来很简单,很常见,不会造成任何问题,但许多经验丰富的程序员经常因为这个小细节而在处理代码时遇到真正的失败。知道何时、如何以及为什么使用按值传递或按引用传递将对我们作为程序员的生活产生巨大的影响。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

交易中的神经网络:超点变换器(SPFormer)
在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。

ALGLIB 库优化方法(第二部分)
在本文中,我们将继续研究ALGLIB库中剩余的优化方法,并特别关注它们在复杂多维函数上的测试表现。这样我们不仅能够评估每种算法的效率,还能在不同条件下比较出它们的优势与不足。

开发回放系统(第 65 部分):玩转服务(六)
在本文中,我们将研究如何在与回放/模拟应用程序结合使用时实现和解决鼠标指针问题。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能
在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。

您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)
抛物线止损和反转(PSAR) 是趋势确认、和趋势终结点的指标。因为它在识别趋势方面滞后,所以它的主要目的是为持仓定位尾随止损。然而,我们要探索它是否真的可以当作智能系统的交易信号,这要归功于由向导汇编智能系统的自定义信号类。

从基础到中级:SWITCH 语句
在本文中,我们将学习如何以最简单、最基本的形式使用 SWITCH 语句。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

ALGLIB库优化方法(第一部分)
在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。
在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。

构建K线图趋势约束模型(第九部分):多策略EA(第一部分)
今天,我们将探讨如何使用MQL5将多种策略集成到一个EA中。EA不仅仅提供指标和脚本,还允许采用更复杂的交易方法,这些方法能够适应不断变化的市场条件。请阅读本文,带您了解更多。