自定义指标:为净额结算账户绘制部分入场、出场和反转交易
在本文中,我们将探讨在MQL5中创建指标的一种非标准方法。我们的目标不是专注于趋势或图表形态,而是管理我们自己的仓位,包括部分入场和出场。我们将广泛使用动态矩阵以及一些与交易历史和未平仓头寸相关的交易函数,以在图表上显示这些交易发生的位置。
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试
默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
在MetaTrader 5中实现基于EMA交叉的级联订单交易策略
本文介绍一个基于EMA交叉信号的自动交易算法,该算法适用于MetaTrader 5平台。文章详细阐述了在MQL5中开发一个EA所需的方方面面,以及在MetaTrader 5中进行测试的过程——从分析价格区间行为到风险管理。
您应当知道的 MQL5 向导技术(第 20 部分):符号回归
符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理
贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)
通过研究 FEDformer 方法,我们打开了时间序列频域表述的大门。在这篇新文章中,我们将继续一开始的主题。我们将研究一种方法,据其我们不仅能进行分析,还可以预测特定区域的后续状态。
在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘
本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。
构建蜡烛图趋势约束模型(第7部分):为EA开发优化我们的模型
在本文中,我们将详细探讨为开发专家顾问(EA)所准备的指标的相关内容。我们不仅会讨论如何对当前版本的指标进行进一步改进,以提升其准确性和功能,还会引入全新的功能来标记退出点,以弥补之前版本仅具备识别入场点功能的不足。
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)
在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。
开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。
神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)
到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。
构建K线图趋势约束模型(第六部分):一体化集成
我们的一个主要挑战是:如何管理运行相同程序但具有不同功能的同一货币对的多个图表窗口。让我们讨论一下如何将多个窗口集成整合到一个主程序中。此外,我们还将分享如何配置程序以将信息打印到日志中,以及在图表界面上对成功发出的信号进行注释的见解。随着本系列文章的推进,您将在本文中找到更多的相关信息。
在您的 MQL 项目中使用 JSON 数据 API
想象一下,您可以使用 MetaTrader 中没有的数据,您只能通过价格分析和技术分析从指标中获得数据。现在想象一下,您可以访问数据,这将使你的交易能力更高。如果您通过 API(应用程序编程接口)数据混合其他软件、宏观分析方法和超高级工具的输出,您就可以倍增 MetaTrader 软件的力量。在本文中,我们将教您如何使用 API,并介绍有用和有价值的 API 数据服务。
使用MQL5开发基于震荡区间突破策略的EA
本文概述了如何创建一个基于价格突破震荡区间进行交易的EA。通过识别震荡区间并设定突破水平,交易者可以基于这一策略自动化其交易决策。该EA旨在为交易者提供明确的入场和出场点,同时避免虚假突破。
开发回放系统(第 55 部分):控制模块
在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)
为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
化学反应优化(CRO)算法(第一部分):在优化中处理化学
在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。
MQL5 向导技巧须知(第27部分):移动平均线与攻击角度
攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。
开发多币种 EA 交易 (第 13 部分):自动化第二阶段 — 分组选择
我们已经实现了自动化优化的第一阶段。我们根据若干标准对不同的交易品种和时间框架进行优化,并将每次通过的结果信息存储在数据库中。现在我们将从第一阶段找到的参数集中选择最佳组。
开发回放系统(第 53 部分):事情变得复杂(五)
在本文中,我们将介绍一个很少有人了解的重要话题:定制事件。危险。这些要素的优缺点。对于希望成为 MQL5 或其他语言专业程序员的人来说,本主题至关重要。在此,我们将重点介绍 MQL5 和 MetaTrader 5。
MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库
了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。
情绪分析与深度学习在交易策略中的应用以及使用Python进行回测
在本文中,我们将介绍如何使用Python中的情绪分析和ONNX模型,并将它们应用于EA中。使用一个脚本运行TensorFlow训练的ONNX模型,以进行深度学习预测;而通过另一个脚本获取新闻标题,并使用人工智能技术量化情绪。
使用PatchTST机器学习算法预测未来24小时的价格走势
在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。
构建K线趋势约束模型(第五部分):通知系统(第三部分)
本系列文章的这一部分专门介绍如何将WhatsApp与MetaTrader 5集成以实现通知功能。我们包含一张流程图以简化理解,并将讨论在集成过程中安全措施的重要性。指标的主要目的是通过自动化的简化分析过程,并且它们应包含通知方法,以便在满足特定条件时向用户发出警报。欲了解更多信息,请阅读本文。
开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器
在正在开发的 EA 中,我们已经有了某种控制回撤的机制。但它具有概率性,因为它是以历史价格数据的测试结果为基础的。因此,回撤有时会超过最大预期值(尽管概率很小)。让我们试着增加一种机制,以确保遵守指定的回撤水平。
开发回放系统(第 51 部分):事情变得复杂(三)
在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
MacOS 上的 MetaTrader 5
我们为 macOS 上的 MetaTrader 5 交易平台提供了专用的安装程序。它是一个功能齐全的向导,允许您以本机方式安装应用程序。安装程序执行所有必需的步骤:它识别您的系统,下载并安装最新的 Wine 版本,对其进行配置,然后在其中安装 MetaTrader。所有步骤都在自动模式下完成,您可以在安装后立即开始使用平台。