如何创建订购交易机器人的需求规范
您是否正在运用自己的策略进行交易? 如果您的系统规则可以描述为正规的软件算法,那么最好将交易委托给自动智能系统。 机器人不需要睡觉或食物,也不会受到人类弱点的影响。 在本文中,我们将展示如何在自由职业服务版块订购交易机器人时创建需求规范。
可视化策略构建工具. 无需编程即可创建交易机器人
本文展示了一个可视化的策略构建工具,它演示了任何用户如何不必编程就能创建交易机器人和相关工具。创建出的 EA 交易是完整功能的,并且可以在策略测试器中测试,通过云计算来优化或者实时运行于图表之上。
强化学习中的随机决策森林
使用 bagging 的随机森林(Random Forest, RF) 是最强大的机器学习方法之一, 它略微弱于梯度 boosting,这篇文章尝试开发了一个自我学习的交易系统,它会根据与市场的交互经验来做出决策。
深度神经网络 (第五部分)。 DNN 超参数的贝叶斯优化
本文研究利用贝叶斯优化深度神经网络 (DNN) 超参数,获取各种训练变体的可能性。 比较不同训练变体中最优超参数 DNN 的分类品质。 DNN 最优超参数的有效性的深度已在前瞻性测试中得以验证。 改善分类品质的可能方向也已确定。
在 MetaTrader 5 中交易策略优化的可视化
本文采用图形界面实现 MQL 应用程序来扩展可视化的优化过程。 图形界面采用 EasyAndFast 函数库的最新版本。 许多用户可能会问为什么他们在 MQL 应用程序中需要图形界面。 本文为交易者展示了众多实用情况之一。
利用文斯 (Vince) 进行资金管理。 作为 MQL5 向导模块实现
本文基于拉尔夫·文斯 (Ralph Vince) 的 "资金管理中的数学"。 它所提供的经验和参数方法描述, 可用于查询交易手数的最优规模。 本文还介绍了基于这些方法实现 MQL5 向导的交易模块。
动量弹球交易策略
在这篇文章中,我们会继续探讨根据 Linda B. Raschke 和 Laurence A. Connors 的 “华尔街智慧: 高胜算短线交易策略(Street Smarts: High Probability Short-Term Trading Strategies)”一书中描述的交易策略来书写代码,这一次我们将研究动量弹球系统(Momentum Pinball system): 我们会描述创建两个指标,交易机器人和一个其中的信号模块。
用于 MQL5 向导的 NRTR 指标和交易模块
在本文中, 我们将分析 NRTR 指标, 并基于此指标创建一个交易系统。我们将会开发一个交易信号模块, 此模块可用来创建基于 NRTR 与附加趋势确认指标相结合的策略。
测试当交易货币对篮子时出现的形态第二部分
我们继续测试形态并尝试在文章中描述的交易货币对篮子的方法。让我们探讨在实际应用中是否可能使用组合 WPR 图与移动平均交叉的形态,如果答案是可以,我们应当考虑适当的使用方法。
利用卡尔曼 (Kalman) 滤波器预测价格方向
为了成功交易, 我们几乎总是需要指标来把主要价格走势与噪音波动剥离。在本文中, 我们考察最有前途的数字滤波器之一, 卡尔曼滤波器。本文将介绍如何绘制和使用滤波器。
TradeObjects: 基于 MetaTrader 图形对象的自动化交易
本文探讨基于图表线性标记创建自动交易系统的一种简单方法, 并提供了一款使用 MetaTrader 4/5 标准对象属性的现成智能交易系统, 可支持主要交易操作。
如何进行交易信号的定量分析, 并从中选择最佳交易信号
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
交易中的夹角. 需要进一步的研究
在本文中,我们讨论的交易分析方法是,在 MetaTrader 4 终端中度量夹角。本文提供了一个大致的计划来使用夹角做趋势变化的分析,以及用于在交易中做夹角分析的实用的非标准方法。本文也提出了结论,这对交易是有帮助的。
运用人工智能实现的 Thomas DeMark 次序 (TD SEQUENTIAL)
在本文中, 我将告诉您如何把一个非常著名的策略与神经网络合并以便成功交易。这就是运用人工智能系统实现的 Thomas DeMark 次序策略。仅应用了策略的第一部分, 使用设置和交汇信号。
一个为莫斯科交易所期货开发的点差策略实例
MetaTrader 5 可以开发和测试同时交易多种金融资产的交易机器人。其内建的策略测试器能够自动从经纪商的服务器中下载所需的订单时刻历史,并会考虑到账户的合约规范,所以开发人员不用做任何人工工作。这可以使交易环境条件的重建能够简单和可靠,包括乃至不同交易品种中订单来临之间毫秒级的间隔。在本文中,我们将演示在两种莫斯科交易所期货上开发和测试一种点差策略。
交易货币篮子时可用的形态
跟随我们以前关于货币篮子交易原理的文章, 这里我们将分析交易者可以检测的形态。我们还将研究每种形态的优点和缺点, 并就其使用提供一些建议。基于威廉姆斯振荡器的指标将用作分析工具。
80-20 交易策略
本文介绍用于分析 '80-20' 交易策略而开发的工具 (指标和智能交易系统)。交易策略规则取自 "街头智能。高概率短线交易策略" 作者: Linda Raschke 和 Laurence Connors。我们将使用 MQL5 语言正实现策略规则, 并在最近的行情历史上测试基于策略的指标和智能交易系统。
海龟汤和海龟汤升级版的改进
本文介绍了来自琳达.布拉福德.瑞斯克(Linda Bradford Raschke)和劳伦斯.A.康纳斯(Laurence A. Connors)的《华尔街智慧:高胜算短线交易策略(Street Smarts: High Probability Short-Term Trading Strategies)》一书的两个交易策略,‘海龟汤’和‘海龟汤升级版’的原则规范。在书中描述的策略非常流行,但是有必要知道的是,作者是基于15年到20年的市场行为来开发它们的。
神经网络: 智能交易系统自我优化
是否有可能开发一款能够根据代码命令, 定期优化开仓和平仓条件的智能交易系统?如果我们以模块化的形式实现一个神经网络 (多层感知器) 来分析历史并提供策略, 会发生什么?我们可以做到 EA 每月(每周, 每天或每小时) 进行神经网络优化, 然后继续其工作。因此, 我们可以开发一款自我优化 EA。
评估信号的最简单方式: 交易活动, 回撤/负载, 和 MFE/MAE 分布图表
订阅者经常通过分析信号在提供者账户里的总增长来搜索适当的信号, 这不是个坏主意。然而, 分析特定交易策略的潜在风险也很重要。在本文中, 我们将展示一种基于其绩效值来评估交易信号的简单有效方法。
采用栈式 RBM 的深度神经网络。自训练, 自控制
本文是有关深度神经网络和预测器选择的前文之续篇。在此我们将涵盖由栈式 RBM 初始化的深度神经网络特性, 以及它在 "darch" 软件包里的实现。