有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 50 部分):事情变得复杂 (二)

开发回放系统(第 50 部分):事情变得复杂 (二)

我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
preview
在MQL5中创建交互式图形用户界面(第1部分):制作面板

在MQL5中创建交互式图形用户界面(第1部分):制作面板

本文探讨了使用MetaQuotes Language 5(MQL5)设计和实施图形用户界面(GUI)面板的基本步骤。自定义实用面板通过简化常见任务并可视化重要的交易信息,增强了交易中的用户交互。通过创建自定义面板,交易者可以优化其工作流程,并在交易操作中节省时间。
preview
用Python重塑经典策略:移动平均线交叉

用Python重塑经典策略:移动平均线交叉

在本文中,我们重新审视了经典的移动平均线交叉策略,以评估其当前的有效性。鉴于该策略自诞生以来已经过去了很长时间,我们探索了人工智能可能为其带来的潜在增强效果。通过融入人工智能技术,我们旨在利用高级的预测能力来潜在地优化交易的入场和出场点,适应不断变化的市场条件,并与传统方法相比提高整体表现。
preview
开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

为了获得一个好的 EA,我们需要为它选择多组好的交易策略实例参数。这可以通过对不同的交易品种运行优化然后选择最佳结果来手动完成。但最好将这项工作委托给程序,并从事更有成效的活动。
preview
构建K线图趋势约束模型(第5部分):通知系统(第二部分)

构建K线图趋势约束模型(第5部分):通知系统(第二部分)

今天,我们将讨论如何使用MQL5与Python和Telegram Bot API相结合,为MetaTrader 5的指标通知集成一个实用的Telegram应用。我们将详细解释所有内容,确保每个人都不会错过任何要点。完成这个项目后,您将获得宝贵的见解,可以在自己的项目中加以应用。
preview
让新闻交易轻松上手(第二部分):风险管理

让新闻交易轻松上手(第二部分):风险管理

在本文,我们将把继承引入到我们之前的代码和新代码中。我们将引入一种新的数据库设计以提高效率。此外,还将创建一个风险管理类来处理容量计算。
preview
神经网络变得简单(第 85 部分):多变元时间序列预测

神经网络变得简单(第 85 部分):多变元时间序列预测

在本文中,我愿向您介绍一种新的复杂时间序列预测方法,它和谐地结合了线性模型和转换器的优点。
preview
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
preview
神经网络变得简单(第 84 部分):可逆归一化(RevIN)

神经网络变得简单(第 84 部分):可逆归一化(RevIN)

我们已经知晓,输入数据的预处理对于模型训练的稳定性扮演重要角色。为了在线处理 “原始” 输入数据,我们往往会用到批量归一化层。但有时我们需要一个逆过程。在本文中,我们将讨论解决该问题的可能方式之一。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
开发回放系统(第 49 部分):事情变得复杂 (一)

开发回放系统(第 49 部分):事情变得复杂 (一)

在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
preview
开发多币种 EA 交易 (第 10 部分):从字符串创建对象

开发多币种 EA 交易 (第 10 部分):从字符串创建对象

EA 开发计划包括几个阶段,中间结果保存在数据库中,它们只能作为字符串或数字而不是对象再次从那里读取。因此,我们需要一种方法来根据从数据库读取的字符串重新创建 EA 中的所需对象。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。
preview
掌握市场动态:创建有关支撑与阻力位策略的EA

掌握市场动态:创建有关支撑与阻力位策略的EA

一个关于基于支撑位与阻力位策略开发自动化交易算法的全面指南。详细介绍了在MQL5中创建EA以及在MetaTrader 5中对其进行测试的所有方面——从分析价格区间行为到风险管理。
preview
构建K线趋势约束模型(第5部分):通知系统(第一部分)

构建K线趋势约束模型(第5部分):通知系统(第一部分)

我们将会把关键的MQL5代码分解成特定的代码段,以展示如何在本系列文章中创建的“趋势约束”指标中集成Telegram和WhatsApp来接收信号通知。这将帮助交易者,无论是新手还是经验丰富的开发者,都能更容易地理解这一概念。首先,我们将介绍MetaTrader 5的通知设置及其对用户的重要性。这将有助于开发者提前做好笔记,以便在他们的系统中做进一步应用。
preview
您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测

您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测

“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。
preview
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
preview
在MQL5中开发马丁格尔(Martingale)区域恢复策略

在MQL5中开发马丁格尔(Martingale)区域恢复策略

本文详细探讨了创建基于区域恢复交易算法的EA需要实施的步骤。这有助于自动化该系统,从而为算法交易者节省时间。
preview
可视化交易图表(第二部分):数据图形化展示

可视化交易图表(第二部分):数据图形化展示

接下来,我们将从头开始编写一个脚本,以简化交易订单截图的加载过程,便于分析交易入场点。所有关于单个交易的必要信息都将方便地显示在一个图表上,并且该图表具备绘制不同时间框架的能力。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。
preview
构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

在本文中,我们将探讨强大的MQL5语言在MetaTrader 5上绘制各种指标样式的能力。我们还将研究脚本及其在模型中的应用。
preview
您应当知道的 MQL5 向导技术(第 13 部分):智能信号类 DBSCAN

您应当知道的 MQL5 向导技术(第 13 部分):智能信号类 DBSCAN

《基于密度的空间聚类参与噪声应用》是一种无监督的数据分组形式,除 2 个参数外,几乎不需要任何输入参数,比之其它方式,譬如 k-平均,这是一个福音。我们深入研究使用由向导组装的智能系统如何在测试、及最终交易时起到建设性作用。
preview
突破结构(BoS)交易策略分步指南

突破结构(BoS)交易策略分步指南

基于结构突破(Break of Structure, BoS)策略的自动化交易算法开发综合指南在MQL5中创建交易顾问并在MetaTrader 5中进行测试的全方位详解——从分析价格支撑与阻力到风险管理
preview
开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果

开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果

让我们来概述一下 EA 开发的主要阶段。首先要做的一件事就是优化所开发交易策略的单个实例。让我们试着在一个地方收集优化过程中测试器通过的所有必要信息。
preview
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。
preview
开发回放系统(第 47 部分):Chart Trade 项目(六)

开发回放系统(第 47 部分):Chart Trade 项目(六)

最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
preview
开发多币种 EA 交易(第 8 部分):负载测试和处理新柱

开发多币种 EA 交易(第 8 部分):负载测试和处理新柱

随着我们的进步,我们在一个 EA 中使用了越来越多的同时运行的交易策略实例。让我们试着弄清楚在遇到资源限制之前,我们可以得到多少实例。
preview
使用图表可视化交易(第一部分):选择分析时段

使用图表可视化交易(第一部分):选择分析时段

在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。
preview
开发回放系统(第 46 部分):Chart Trade 项目(五)

开发回放系统(第 46 部分):Chart Trade 项目(五)

厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
preview
改编版 MQL5 网格对冲 EA(第 III 部分):优化简单对冲策略(I)

改编版 MQL5 网格对冲 EA(第 III 部分):优化简单对冲策略(I)

在第三部分中,我们重新审视了早前开发的简单对冲和简单网格智能系统(EA)。我们的重点转移到通过数学分析和蛮力方式完善简单对冲 EA,旨在实现最优策略用法。本文深入探讨了该策略的数学优化,为在日后文章中探索未来基于编码的优化奠定了基础。
preview
理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

学习面向对象的编程范式,及其在 MQL5 代码中的应用。这是第二篇文章,更深入地讲解面向对象编程的规范,并通过一个实际示例提供上手经验。您将学习如何运用 EMA 指标,和烛条价格数据,将我们早期开发的过程化价格行为智能系统转换为面向对象的代码。
preview
构建K线图趋势约束模型(第三部分):在使用该系统时检测趋势变化

构建K线图趋势约束模型(第三部分):在使用该系统时检测趋势变化

本文探讨了经济新闻发布、投资者行为以及各种因素如何影响市场趋势的反转。文章包含一段视频解释,并接着将MQL5代码融入我们的程序中,以检测趋势反转、向我们发出警报,并根据市场条件采取相应行动。本文是在此前一系列文章基础上的扩展。
preview
开发多币种 EA 交易(第 7 部分):根据前向时间段选择组

开发多币种 EA 交易(第 7 部分):根据前向时间段选择组

在此之前,我们曾对一组交易策略实例的选择进行过评估,目的是改进它们的联合运行结果,但这只是在对单个实例进行优化的同一时间段进行的。让我们拭目以待在前向时间段会发生什么。
preview
带有预测性的三角套利

带有预测性的三角套利

本文简化了三角套利的过程,向您展示如何利用预测和专业软件更明智地进行货币交易,即使您是新手也能轻松入门。准备好凭借专业知识进行交易了吗?
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
开发回放系统(第 45 部分):Chart Trade 项目(四)

开发回放系统(第 45 部分):Chart Trade 项目(四)

本文的主要目的是介绍和解释 C_ChartFloatingRAD 类。我们有一个 Chart Trade 指标,它的工作方式非常有趣。您可能已经注意到了,图表上的对象数量仍然很少,但我们却获得了预期的功能。指标中的数值是可以编辑的。问题是,这怎么可能呢?这篇文章将使答案变得更加清晰。
preview
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
preview
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
preview
开发多币种 EA 交易(第 6 部分):自动选择实例组

开发多币种 EA 交易(第 6 部分):自动选择实例组

在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。