5 novos sinais já está disponível para assinatura:
| Crescimento: | 166.13 | % |
| Capital Líquido: | 6,145.87 | USD |
| Saldo: | 6,143.78 | USD |
| Crescimento: | 166.13 | % |
| Capital Líquido: | 6,145.87 | USD |
| Saldo: | 6,143.78 | USD |
| Crescimento: | 183.22 | % |
| Capital Líquido: | 839.33 | USD |
| Saldo: | 959.28 | USD |

Este trabalho apresenta uma análise da interação entre diferentes funções de ativação e algoritmos de otimização no contexto do treinamento de redes neurais. A atenção principal está voltada para a comparação entre o ADAM clássico e sua versão populacional ao lidar com uma ampla gama de funções de ativação, incluindo as funções oscilatórias ACON e Snake. Mediante uma arquitetura MLP minimalista (1-1-1) e um único exemplo de treino, isola-se a influência das funções de ativação no processo de otimização, eliminando interferências de outros fatores. Propomos um método de controle dos pesos da rede por meio dos limites das funções de ativação e um mecanismo de reflexão de pesos, permitindo evitar problemas de saturação e estagnação no aprendizado.

Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.

Neste artigo iremos ver como podemos implementar um sistema de interação muito bacana e bastante interessante. Ainda mais para quem esteja começando a praticar programação MQL5. Não se trata de algo realmente novo. Porém a forma como irei abordar o assunto, de fato, tornará tudo muito mais simples de entender. Já que iremos ver na prática uma programação estrutural sendo feita com um objetivo bastante divertido.

Este artigo, é uns dos que definitivamente, é necessário não apenas ver o código e o estudar para compreender o que estará acontecendo. É de fato, necessário, criar uma aplicação executável e a utilizar em um gráfico qualquer. Isto maneira a conseguir entender pequenos detalhes, que de outra forma são muito complicados de serem compreendidos. Como por exemplo, a combinação de teclado com o mouse, a fim de construir certos tipos de coisas.
| Crescimento: | 255.18 | % |
| Capital Líquido: | 3,551.76 | USD |
| Saldo: | 3,551.76 | USD |

Este artigo apresenta uma abordagem inovadora para a análise técnica, baseada na conversão dos movimentos de preço em código binário. O autor mostra como diferentes aspectos do comportamento do mercado - desde movimentos simples de preço até padrões complexos - podem ser codificados em sequências de zeros e uns.

Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.

Apesar de muitos imaginarem que podemos usar tranquilamente códigos em SQL dentro de outros códigos. Isto normalmente não se aplica. Devido ao fato, de que um código SQL, será sempre colocado dentro de um executável, como sendo uma string. E este fato de colocar o código SQL como sendo uma string, apesar de não ser problemático, para pequenos trechos de código. Podem sim ser algo que nos causará muitos transtornos e uma baita de uma dor de cabeça.

Este artigo explicará como instalar facilmente o MetaTrader 5 nas versões populares do Linux, Ubuntu e Debian. Esses sistemas são amplamente utilizados não apenas em hardware de servidor, mas também em computadores comuns por traders.

Estamos desenvolvendo um sistema de trading modular que combina Python para análise de dados com MQL5 para execução de ordens. Quatro módulos independentes monitoram paralelamente diferentes aspectos do mercado: volumes, arbitragem, economia e riscos, utilizando RandomForest com 400 árvores para análise. É dado um foco especial no gerenciamento de risco, pois sem uma gestão adequada, até os algoritmos de trading mais avançados tornam-se inúteis.

Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.
| Crescimento: | 84.36 | % |
| Capital Líquido: | 28,049.35 | USD |
| Saldo: | 28,760.38 | USD |
| Crescimento: | 39.13 | % |
| Capital Líquido: | 34,781.27 | USD |
| Saldo: | 34,781.27 | USD |
| Crescimento: | 19.67 | % |
| Capital Líquido: | 8,599.34 | USD |
| Saldo: | 10,238.20 | USD |

Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.

Este artigo é dedicado aos polinômios ortogonais. Seu uso pode se tornar a base para uma análise mais precisa e eficaz das informações do mercado, permitindo que o trader tome decisões mais fundamentadas.

Os aplicativos da MetaQuotes, incluindo as plataformas MetaTrader 5 e MetaTrader 4, podem ser instalados em dispositivos com o sistema operacional HarmonyOS NEXT usando o componente DroiTong. Este artigo apresenta um guia passo a passo para instalar os programas em seu telefone ou notebook.

As abordagens de memória em camadas, que imitam os processos cognitivos humanos, permitem processar dados financeiros complexos e se adaptar a novos sinais, o que contribui para decisões de investimento mais eficazes em mercados dinâmicos.

As Bandas de Bollinger são um indicador do tipo Envelope muito comum, utilizado por muitos traders para abrir e fechar operações manualmente. Vamos examinar esse indicador considerando o máximo possível dos diferentes sinais que ele pode gerar e ver como eles podem ser utilizados em um Expert Advisor montado com o wizard.
| Crescimento: | 1,333.15 | % |
| Capital Líquido: | 2,866.85 | USD |
| Saldo: | 2,866.30 | USD |

Este artigo apresenta o método Big Bang - Big Crunch, que possui duas fases principais: a criação cíclica de pontos aleatórios e sua compressão em direção à solução ótima. Essa abordagem combina diversificação e intensificação, permitindo encontrar gradualmente soluções melhores e abrindo novas possibilidades na área de otimização.

Este artigo explicará como instalar facilmente o MetaTrader 5 nas versões populares do Linux, Ubuntu e Debian. Esses sistemas são amplamente utilizados não apenas em hardware de servidor, mas também em computadores comuns por traders.

Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.

Estamos desenvolvendo um sistema de trading modular que combina Python para análise de dados com MQL5 para execução de ordens. Quatro módulos independentes monitoram paralelamente diferentes aspectos do mercado: volumes, arbitragem, economia e riscos, utilizando RandomForest com 400 árvores para análise. É dado um foco especial no gerenciamento de risco, pois sem uma gestão adequada, até os algoritmos de trading mais avançados tornam-se inúteis.
| Crescimento: | 119.15 | % |
| Capital Líquido: | 36,419.63 | USD |
| Saldo: | 35,564.37 | USD |