English Русский 中文 Español Deutsch 日本語 한국어 Français Italiano Türkçe
A Implementação da Análise Automática das Ondas de Elliott em MQL5

A Implementação da Análise Automática das Ondas de Elliott em MQL5

MetaTrader 5Exemplos | 6 março 2014, 16:04
6 922 3
MRoVas
[Excluído]

Introdução

Um dos métodos mais populares de análise do mercado é o princípio das ondas de Elliott. No entanto, este processo é muito complicado, o que leva à utilização de instrumentos adicionais. Um desses instrumentos é o marcador automático.

Este artigo descreve a criação de um analisador automático de ondas de Elliott na linguagem MQL5. Supõe-se que o leitor já esteja familiarizado com a teoria da onda, se não, você precisa consultar as fontes adequadas.


1. Princípio das Ondas de Elliott

Ondas de Elliott - é um modelo teórico do comportamento do mercado, desenvolvido por Ralph Nelson Elliott, segundo o qual todos os movimentos de preços no mercado estão sujeitos a psicologia humana e é um processo cíclico de mudanças das ondas de impulso a correção e vice versa.

As ondas de impulso são uma sequência de cinco flutuações de preços, as ondas corretivas - uma sequência de três ou cinco flutuações de preços. As ondas de impulso em sua forma, estrutura e as regras que lhes são aplicáveis são dos seguintes tipos:

1. Impulsos:
Figura 1. Impulso
Figura 1. Impulso
  • A extremidade da segunda onda nunca chega ao início da primeira onda;
  • A terceira onda sempre se estende além do topo da primeira onda;
  • O fim da quarta onda nunca chega ao topo da primeira onda;
  • A terceira onda nunca é a menor de todas as ondas atuantes;
  • A terceira onda é sempre um impulso;
  • A primeira onda pode ser um impulso ou um dominante diagonal;
  • A quinta onda pode ser um impulso ou uma diagonal;
  • A segunda onda pode assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • A quarta onda pode assumir a forma de qualquer onda correcional;
2. Diagonais principais:
Figura 2. Diagonal principal
Figura 2. Diagonal principal
  • A extremidade da segunda onda nunca chega ao início da primeira onda;
  • A terceira onda sempre se estende além do topo da primeira onda;
  • O fim da quarta onda vem sempre por cima da primeira onda, mas nunca ultrapassa o começo da terceira onda;
  • A terceira onda nunca é a menor de todas as ondas atuantes;
  • A terceira onda é sempre um impulso;
  • A primeira onda pode ser um impulso ou um dominante diagonal;
  • A quinta onda pode ser um impulso ou uma diagonal;
  • A segunda onda pode assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • A quarta onda pode assumir a forma de qualquer onda correcional;
3. Diagonais:
Figura 3. Diagonal
Figura 3. Diagonal
  • A extremidade da segunda onda nunca chega ao início da primeira onda;
  • A terceira onda sempre se estende além do topo da primeira onda;
  • O fim da quarta onda vem geralmente sobre o topo da primeira onda, mas nunca passa por cima da terceira onda;
  • A terceira onda nunca é a menor de todas as ondas atuantes;
  • A primeira, segunda e terceira ondas podem assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • A quarta e quinta ondas podem assumir a forma de qualquer onda correcional;
As ondas corretivas são classificadas em:
4. Zigue-zagues:
Figura 4. Zigue-zague
Figura 4. Zigue-zague
  • A onda A pode assumir a forma de um impulso ou um dominante diagonal;
  • A onda C pode assumir a forma de um impulso ou uma diagonal;
  • A onda B pode assumir a forma de qualquer onda corretiva;
  • A onda C estende-se além do topo da onda A;
  • O fim da onda B não ultrapassa o início da onda A;
5. Planos:
Figura 5. Plano
Figura 5. Plano
  • A onda A pode assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • A onda B pode assumir a forma de qualquer onda corretiva;
  • A onda C pode assumir a forma de um impulso ou uma diagonal;
6. Zigue-zagues Duplos:
Figura 6. Zigue-zague Duplo
Figura 6. Zigue-zague Duplo
  • A onda W e Y assumem a forma de um zigue-zague;
  • A onda X pode assumir a forma de qualquer onda corretiva;
  • A onda Y estende-se além do topo da onda W;
  • O fim da onda X não ultrapassa o início da onda W;
7. Zigue-zagues triplos
Figura 7. Zigue-zague triplo
Figura 7. Zigue-zague triplo
  • As ondas W, Y e Z assumem a forma de um zigue-zague;
  • A onda X pode assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • A onda XX pode assumir a forma de qualquer onda corretiva;
  • A onda Y estende-se além do topo da onda W;
  • A onda Z estende-se além do topo da onda Y;
  • O fim da onda X não ultrapassa o início da onda W;
  • O fim da onda XX não ultrapassa o início da onda Y;
8. Duplo Três:
Figura 8. Duplo Três
Figura 8. Duplo Três
  • A onda W assume a forma de qualquer onda corretiva, exceto um triângulo;
  • As ondas X e Y podem assumir a forma de qualquer onda corretiva;
9. Triplo Três:
Figura 9. Triplo Três:
Figura 9. Triplo Três:
  • As ondas W, X e Y podem assumir qualquer forma de uma onda corretiva, exceto um triângulo;
  • As ondas XX e Z podem assumir a forma de qualquer onda corretiva;
10. Contração do Triângulo:
Figura 10. Contração do triângulo:
Figura 10. Contração do triângulo:
  • A onda C nunca vai além dos limites de preço da onda B;
  • A onda D nunca vai além dos limites de preço da onda C;
  • A onda E nunca vai além dos limites de preço da onda D;
  • As ondas A, B e C podem assumir a forma de qualquer onda corretiva, exceto um triângulo;
  • As ondas D e E podem assumir a forma de qualquer onda corretiva;
11. Expansão do Triângulos:
Figura 11. Expansão do Triângulo:
Figura 11. Expansão do Triângulo:
  • A onda C é sempre maior em comprimento que a onda B
  • A onda D é sempre maior em comprimento que a onda C
  • As ondas A, B e C podem assumir a forma de qualquer onda corretiva, exceto para o triângulo
  • As ondas D e E podem assumir a forma de qualquer onda corretiva

Os modelos e regras de ondas, apresentados acima, correspondem apenas à noção clássica da análise de onda.

Há também a sua concepção moderna, formada durante o estudo do mercado Forex. Por exemplo, um novo modelo de triângulo oblíquo (deslizante) é encontrado, os impulsos com o triângulo na segunda onda são identificados, etc.

Como pode ser visto a partir das figuras 1-11, cada impulso ou onda corretiva consiste do mesmo impulso e ondas corretivas (mostradas pela linha tracejada), mas em menor grau. Este é o chamado fractal (aninhamento) de ondas de Elliott: ondas de um grande grau consistem de ondas de menor grau, o que, por sua vez, são compostas de ondas muito menores, e assim por diante.

Nesta nota, podemos completar a breve introdução ao princípio das ondas de Elliott e ir para o tópico de mark-up automático das ondas.


2. Algoritmo do mark-up automático das Ondas de Elliott

Como você provavelmente já percebeu, a análise de Onda de Elliott é um processo complexo e multifacetado. Portanto, as pessoas começaram desde o início pesquisar e aplicar os instrumentos que ajudam a facilitá-la.

Uma dessas ferramentas tornou-se o mecanismo de mark-up automático das Ondas de Elliott.

Podemos distinguir dois princípios de mark-ups automáticos:

  1. De acordo com a fractalidade das ondas, a análise é levada a cabo de cima para baixo, a partir da onda maior para as menores;
  2. A análise é levada a cabo por um enumeração direta de todas as opções possíveis.

Um diagrama de bloco de análise automática das Ondas de Elliott é demonstrado na figura 12.

Figura 12. Um diagrama de bloco de análise automática das ondas de Elliott
Figura 12. Um diagrama de bloco de análise automática das ondas de Elliott

Considere o algoritmo em mais detalhes, com base no exemplo do mark-up automático de impulso (ver Figura 13).

Na primeira etapa, no intervalo de tempo necessário da tabela de preços, utilizando o "Zigue-zague", a quantidade de pontos necessários para fazer o mark-up são realçados. O número de pontos depende de que tipo de onda queremos analisar. Assim, para a análise do impulso, são necessários seis pontos - 5 vértices e um ponto de partida. Se fôssemos analisar o ziguezague, o número de pontos necessários teria sido de 4 - 3 vértices e um ponto de partida.

Se o "Zigue-zague" identificou seis pontos na tabela de preços, então podemos gerar imediatamente um mark-up do impulso: primeiro ponto - o ponto de partida da primeira onda, o segundo ponto - o vértice da primeira onda, o terceiro ponto - o vértice da segunda onda, o quarto ponto - o vértice da terceira onda, o quinto ponto - o vértice da quarta onda, e o sexto ponto - o vértice da quinta onda.

No entanto, na Figura 13, o "Zigue-zague" identificou 8 pontos. Neste caso, será necessário enumerar por esses pontos todas as opções possíveis e mark-ups da onda. E haverá cinco deles (marcados com cores diferentes). E cada versão do mark-up terá de ser verificada de acordo com as regras.

opções do mark-up
Figura 13. Opções para marcar o mark-up de um impulso

Depois de se verificar em oposição as regras, no caso do mark-up da onda ser um impulso por todos os parâmetros, todas as suas sub-ondas são analisadas da mesma maneira.

O mesmo aplica-se às análises de todos os outros impulsos e as ondas de correção.

3. Os tipos de ondas para o mark-up automático

Como afirmado anteriormente, a análise será realizada a partir do topo para baixo, dando as instruções do programa para encontrar alguma onda num determinado intervalo. No entanto, no intervalo maior, é impossível determinar o estado da onda, seu início e fim. Vamos chamar de uma onda não iniciada e inacabada.

Todas as ondas podem ser divididas nos seguintes grupos:

  1. Ondas não iniciadas:
    1. As ondas com uma primeira onda não iniciada- 1-2-3-4-5 (por exemplo, um impulso com uma onda não iniciada 1, o número de pontos necessários - 5), e 1-2-3 (por exemplo, um Zigue-zague com uma onda não iniciada A, o número de pontos necessários - 3);
    2. As ondas com uma segunda onda não iniciada - 2-3-4-5 (por exemplo, uma diagonal com uma onda não iniciada 2, o número de pontos necessários - 4), e 2-3 (por exemplo, um plano com uma onda não iniciada B, o número de pontos necessários -2);
    3. Ondas com uma terceira onda não começada - 3-4-5 (por exemplo, um Zigue-zague Triplo com uma onda não iniciada Y, o número de pontos necessários - 3);
    4. Ondas com uma quarta onda não iniciada - 4-5 (por exemplo, um Triângulo com uma onda não iniciada D, o número de pontos necessários -2);
    5. Ondas com uma quinta onda não iniciada - 5 (por exemplo, um impulso com uma onda não iniciada 5, o número de pontos necessários - 1);
    6. Ondas com uma terceira onda não iniciada - 3 (por exemplo, um duplo três com uma onda não iniciada Z, o número de pontos necessários - 1);
  2. Ondas inacabadas:
    1. Ondas com uma quinta onda inacabada - -1-2-3-4-5 (por exemplo, um impulso com uma onda não inacabada 5, o número de pontos necessários - 5);
    2. Ondas com uma terceira onda inacabada - 1-2-3-4> (por exemplo, um zigue-zague Triplo com uma onda inacabada XX, o número de pontos necessários - 4);
    3. Ondas com uma terceira onda inacabada - 1-2-3> (por exemplo, um dominante diagonal da onda inacabada 3, o número de pontos necessários -3);
    4. Ondas com uma segunda onda não inacabada - 1-2> (por exemplo, um Zigue-zague com uma onda inacabada B, o número de pontos necessários -2);
    5. Ondas com uma primeira onda inacabada - 1> (por exemplo, um plano com uma onda inacabada A, o número de pontos necessários -1);
  3. Ondas não iniciadas e inacabadas:
    1. Ondas com uma primeira onda não iniciada e uma segunda onda inacabada -1-2> (por exemplo, um Zigue-zague com uma onda não iniciada A e uma onda inacabada B, o número de pontos necessários - 1);
    2. Ondas com uma segunda onda não iniciada e uma terceira onda inacabada -2-3>(por exemplo, um Zigue-zague com uma onda não iniciada B e uma onda inacabada C, o número de pontos necessários - 1);
    3. Ondas com uma terceira onda não iniciada e uma quarta onda inacabada -3-4>(por exemplo, um impulso com uma onda não iniciada 3 e uma onda inacabada 4, o número de pontos necessários - 1);
    4. Ondas com uma quarta onda não iniciada e uma quinta onda inacabada -4-5>(por exemplo, um impulso com uma onda não iniciada 4 e uma onda inacabada 5, o número de pontos necessários - 1);
    5. Ondas com uma primeira onda não iniciada e uma terceira onda inacabada -1-2-3>(por exemplo, um triplo três com uma onda não iniciada W e uma onda inacabada Y, o número de pontos necessários - 2);
    6. Ondas com uma segunda onda não iniciada e uma quarta onda inacabada -2-3-4>(por exemplo, um dominante diagonal com uma onda não iniciada 2 e uma onda inacabada 4, o número de pontos necessários - 2);
    7. Ondas com uma terceira onda não iniciada e uma quinta onda inacabada -3-4-5>(por exemplo, uma diagonal com uma onda não iniciada 3 e uma onda inacabada 5, o número de pontos necessários - 2);
    8. Ondas com uma primeira onda não iniciada e uma quarta onda inacabada -1-2-3-4>(por exemplo, um triplo três com uma onda não iniciada W e uma onda inacabada XX, o número de pontos necessários - 3);
    9. Ondas com uma segunda onda não iniciada e uma quinta onda inacabada -2-3-4-5>(por exemplo, um impulso com uma onda não iniciada 2 e uma onda inacabada 5, o número de pontos necessários - 3);
    10. Ondas com uma primeira onda não iniciada e uma quinta onda inacabada -1-2-3-4-5>(por exemplo, um Triplo zigue-zague com uma onda não iniciada W e uma onda inacabada Z, o número de pontos necessários - 4);
  4. Ondas completadas - 1-2-3-4-5 (o número de pontos necessários - 6) e 1-2-3 (o número de pontos necessários - 4).

O sinal "<" após o número da onda, indica que ela não iniciou. O sinal ">" após o número da onda, indica que ela está incompleta.

Na figura 14 podemos ver as seguintes ondas:

  1. Uma a com uma primeira onda não iniciada A -A -B-C;
  2. Uma onda com uma primeira onda não iniciada W e uma segunda inacabada X -W<-X>;
  3. Ondas completadas B e C;

Ondas não iniciada e inacabadas
Figura 14. Ondas não iniciada e inacabadas


4. A descrição das estruturas de dados do analisador automático das Ondas de Elliott

Para escrever o analisador automático das Ondas de Elliott, precisaremos das seguintes estruturas de dados:

4,1. A estrutura da descrição das ondas analisadas no programa:

// The structure of the description of the analyzed waves in the program
struct TWaveDescription
  {
   string            NameWave;    // name of the wave
   int               NumWave;     // number of sub-waves in a wave
   string            Subwaves[6]; // the names of the possible sub-waves in the wave
};

4.2. Uma classe para armazenar os parâmetros de uma onda específica:

// A class for storing the parameters of a wave
class TWave
  {
public:
   string            Name;            // name of the wave
   string            Formula;         // the formula of the wave (1-2-3-4-5, <1-2-3 etc.)
   int               Level;           // the level of the wave
   double            ValueVertex[6]; // the value of the top of the wave
   int               IndexVertex[6]; // the indexes of the top of the waves
  };

4.3. Uma classe para armazenar os valores dos vértices e os índices do vértice do Zigue-zague:

// A class for storing the values of vertexes and indexes of the zigzag
class TZigzag:public CObject
  {
public:
   CArrayInt        *IndexVertex;    // indexes of the vertexes of the zigzag
   CArrayDouble     *ValueVertex;    // value of the vertexes of the zigzags
  };

4.4. Classe para representar a árvore de ondas:

// A class for the presentation of the tree of the waves
class TNode:public CObject
  {
public:
   CArrayObj        *Child;    // the child of the given tree node
   TWave            *Wave;      // the wave, stored in the given tree node
   string            Text;       // text of the tree node
   TNode            *Add(string Text,TWave *Wave=NULL) // the function of adding the node to the tree
     {
      TNode *Node=new TNode;
      Node.Child=new CArrayObj;
      Node.Text =Text;
      Node.Wave=Wave;
      Child.Add(Node);
      return(Node);
     }
  };

4.5. A estrutura para o armazenamento dos pontos, encontrado pelo zigue-zague:

// The structure for storing the points, found by the zigzag
struct TPoints
  {
   double            ValuePoints[];  // the values of the found points
   int               IndexPoints[];  // the indexes of the found points
   int               NumPoints;       // the number of found points
  };

4.6. Uma classe para armazenar os parâmetros da seção já analisada​do gráfico:

// A class for storing the parameters of the already analyzed section, corresponding to the wave tree node
class TNodeInfo:CObject
  {
public:
   int               IndexStart,IndexFinish;  // the range of the already analyzed section
   double            ValueStart,ValueFinish;  // the edge value of the already analyzed section
   string            Subwaves;                  // the name of the wave and the group of the waves
   TNode            *Node;                      // the node, pointing to the already analyzed range of the chart
  };

4.7. Uma classe para armazenar a marcação das ondas antes de colocá-las no gráfico:

// A class for storing the marking of waves before placing them on the chart
class TLabel:public CObject
  {
public:
   double            Value;  // the value of the vertex
   int               Level;  // the level of the wave
   string            Text;    // the marking of the wave
  };
  

5. A descrição da função do analisador automático das ondas de Elliott

Para escrever o analisador automático das Ondas de Elliott, precisaremos das seguintes funções:

5.1. Zigue-zague

A função de busca dos extremos dos "Zigue-zagues":

int Zigzag(intH,int Start,int Finish,CArrayInt *IndexVertex,CArrayDouble *ValueVertex)

Um elemento chave no analisador automático das Ondas de Elliott é o "Zigue-zague", pelo qual as ondas serão construídas. O cálculo do "Zigue-zague" por qualquer parâmetro deve ser feito muito rapidamente.

No nosso analisador, estaremos usando o "zigue-zague", retirado do artigo "How to Write Fast Non-Redrawing ZigZags".

A função Zigue-zague calcula o Zigue-zague, com o parâmetro H no intervalo do início ao fim, e, em seguida, registra os índices encontrados dos vértices e os valores dos vértices, respectivamente, nas matrizes IndexVertex e ValueVertex, cujos endereços são passados a esta função.

A função Zigue-zague retorna o número de vértices encontrados do "Zigue-zague".

5,2. FillZigZagArray

Função do enchimento do "Zigue-zague" e o armazenamento dos seus parâmetros:

void FillZigzagArray(int Start,int Finish)

Como foi mostrado antes, teremos que encontrar o número necessário de pontos na tabela de preços para o mark-up da onda. E, portanto, precisaremos ter uma matriz de vértices de "Zigue-zague", com parâmetros diferentes, que depois repetiremos para encontrar esses pontos.

A função FillZigzagArray calcula o "zigue-zague" no intervalo do gráfico do início ao fim, com todos os valores possíveis do parâmetro H (até ao número de vértices do "Zigue-zague" não será igual ou inferior a dois), armazena as informações sobre os vértices encontrados nos objetos de classe TZigzag e os registros desses objetos na ZigzagArray da matriz global, o anunciamento deste é como segue:

CArrayObj *ZigzagArray;

5.3. FindPoints

A função de busca em um determinado intervalo requer o número de pontos na tabela de preços:

bool FindPoints(int NumPoints,int IndexStart,int IndexFinish,double ValueStart,double ValueFinish,TPoints &Points)

A função FindPoints procura por pelo menos três pontos NumPoints na tabela de preços, no intervalo necessário, de indexStart para IndexFinish, com os valores necessários do primeiro e último pontos do ValueStart e ValueFinish, e os salva (ou seja, os pontos), em uma estrutura de pontos, no qual o link é passado para esta função.

A função de FindPoints retorna a verdadeiro, se o número necessário de pontos for encontrado, caso contrário, retorna para falso.

5,4. NotStartedAndNotFinishedWaves

A função da análise das ondas não iniciadas inacabadas:

void NotStartedAndNotFinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)

A função NotStartedAndNotFinishedWaves analisa todas as ondas do terceiro grupo de ondas - as ondas não iniciadas e não finalizadas. A função analisa a onda NumWave (com um nível de onda Level), ondas com o nome ParentWave.Name, que podem tomar a forma de ondas sub-ondas (a forma de um Zigzag, lisas, Zigzag Duplo, e (ou), etc.). A onda analisada, NumWave, será armazenada no nó da árvore de ondas, o nó do nó do filho.

Por exemplo, se ParentWave.Name = "Impulse", NumWave = 5, Subwaves = "Impulse, Diagonal, e Level = 2, então podemos dizer que a função NotStartedAndNotFinishedWaves analisará a quinta onda de Impulso, que possui um nível de onda de dois, e pode tomar a forma de um Impulso ou Diagonal.

Como exemplo, usamos um diagrama de bloco de análise de algoritmo das ondas não iniciadas e não finalizadas 1<-2-3> na função NotStartedAndNotFinishedWaves:

<img src="undefined" alt="Figura 15. O diagrama de bloco da análise de onda com a fórmula " 1"" title="Figura 15. O diagrama de bloco da análise de onda com a fórmula "1<-2-3>"" src="http://p.mql5.com/data/2/260/fig15.gif" height="1746" width="750" style="vertical-align:middle;" />
Figura 15. O diagrama de bloco da análise de onda com a fórmula "1<-2-3>"

Quando estiver usando a função NotStartedAndNotFinishedWaves, as seguintes funções são chamadas: NotStartedWaves, NotFinishedWaves, e FinishedWaves.

5.5. NotStartedWaves

A análise da função de ondas inacabadas:

void NotStartedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)

A função NotStartedWaves analisa todas as ondas do primeiro grupo de ondas - as ondas não iniciadas. A função analisa a onda NumWave (com o nível de nível de onda) da onda chamada ParentWave.Name, que pode assumir a forma de ondas de sub-ondas. A onda analisada, NumWave, será armazenada no nó da árvore de ondas, o nó do nó do filho.

Quando a função NotStartedWaves está trabalhando, as seguintes funções são chamadas: NotStartedWaves e FinishedWaves.

Todas as ondas são analisadas de forma semelhante ao diagrama de blocos na Figura 15.

5,6. NotFinishedWaves

A análise da função de ondas inacabadas:

void NotFinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)

A função NotFinishedWaves analisa todas as ondas do segundo grupo de ondas - ondas inacabadas. A função analisa a onda NumWave (com o nível de nível de onda) da onda chamada ParentWave.Name, que pode assumir a forma de ondas de sub-ondas. A onda analisada, NumWave, será armazenada no nó da árvore de ondas, o nó do nó do filho.

Quando a função NotFinishedWaves está trabalhando, as seguintes funções são chamadas: NotFinishedWaves e FinishedWaves.

Todas as ondas são analisadas de forma semelhante ao diagrama de blocos na Figura 15.

5,7. FinishedWaves

A análise da função de ondas completadas (acabadas):

void FinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)

A função FinishedWaves analisa todas as ondas do quarto grupo - as ondas completadas. A função analisa a onda NumWave (com o nível de nível de onda) da onda chamada ParentWave.Name, que pode assumir a forma de ondas de sub-ondas. A onda analisada, NumWave, será armazenada no nó da árvore de ondas, o nó do nó do filho.

Quando a função FinishedWaves está trabalhando, a função FinishedWaves é chamada:

Todas as ondas são analisadas de forma semelhante ao diagrama de blocos na Figura 15.

5,8. FindWaveInWaveDescription

A função de busca da onda na estrutura de dados da WaveDescription :

int FindWaveInWaveDescription(string NameWave)
  

A função FindWaveInWaveDescription, pelo nome da onda NameWave, transmitido como um parâmetro, o procura na matriz de estruturas WaveDescription e devolve o número de índice correspondente a esta onda.

A matriz de estruturas WaveDescription parece da seguinte forma:

TWaveDescription WaveDescription[]=
  {
     {
      "Impulse",5,
        {
         "",
         "Impulse,Leading Diagonal,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Impulse,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Impulse,Diagonal,"
        }
     }
      ,
     {
      "Leading Diagonal",5,
        {
         "",
         "Impulse,Leading Diagonal,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Impulse,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Impulse,Diagonal,"
        }
     }
      ,
     {
      "Diagonal",5,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,"
        }
     }
      ,
     {
      "Zigzag",3,
        {
         "",
         "Impulse,Leading Diagonal,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Impulse,Diagonal,",
         "",
         ""
        }
     }
      ,
     {
      "Flat",3,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Impulse,Diagonal,",
         "",
         ""
        }
     }
      ,
     {
      "Double Zigzag",3,
        {
         "",
         "Zigzag,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,",
         "",
         ""
        }
     }
      ,
     {
      "Triple Zigzag",5,
        {
         "",
         "Zigzag,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,"
        }
     }
      ,
     {
      "Double Three",3,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "",
         ""
        }
     }
      ,
     {
      "Triple Three",5,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,"
        }
     }
      ,
     {
      "Contracting Triangle",5,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,"
        }
     }
      ,
     {
      "Expanding Triangle",5,
        {
         "",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,",
         "Zigzag,Flat,Double Zigzag,Triple Zigzag,Double Three,Triple Three,Contracting Triangle,Expanding Triangle,"
        }
     }
  };

A função FindWaveInWaveDescription é utilizada na análise de função das seguintes ondas; NotStartedAndNotFinishedWaves, NotStartedWaves, NotFinishedWaves, e FinishedWaves.

5,9. Already

A função que verifica se a dada seção do gráfico já foi analisada:

bool Already(TWave *Wave,int NumWave,TNode *Node,string Subwaves)

Uma vez que a análise automática das Ondas de Elliott ocorre pelo método de enumeração, a situação pode surgir quando a dada seção do gráfico já foi analisada para a presença de uma onda ou um grupo de ondas. Para saber isso, você precisa salvar o link para o nó na árvore das ondas da onda já analisada, e só então publicar o link. Tudo isso acontece em função Already.

A função Already procura um NodeInfoArray de matriz global, que armazena os objetos da classe TNodeInfo, o intervalo do gráfico correspondente a onda NumWave, da onda chamada Wave. O nome, que tem a forma de ondas sub-ondas, e registros no nó do endereço, do nó da seção já marcada do gráfico. Se esta seção não existe, então, um novo objeto da classe TNodeInfo é criado e preenchido, e é registrado na matriz NodeInfoArray.

A função retorna a verdadeiro se o intervalo do gráfico já foi analisado, caso contrário, retorna para falso.

A matriz NodeInfoArray é declarada da seguinte maneira:

CArrayObj NodeInfoArray;

5.10. As funções de verificação das ondas para as regras

Ela inclui as funções VertexAAboveB, WaveAMoreWaveB e WaveRules, a partir da qual as duas primeiras funções são chamadas. Ao testar, lembre-se que as ondas podem ser não iniciadas e (ou) incompletas, e, por exemplo, para a onda com a fórmula "1 <-2-3>", não pode ser determinado se a quarta onda ultrapassou o território da primeira onda porque não existe ainda quarta onda.

5.10.1. WaveRules

Função de verificar as ondas para as regras:

bool WaveRules(TWave *Wave)

A função WaveRules retorna para verdadeiro se uma onda, com o nome Wave.Name é "correta", caso contrário retorna para falso. Em seu trabalho, a função WaveRules é chamada pela função VertexAAboveVertexB e WaveAMoreWaveB.

5.10.2. VertexAAboveVertexB

A função de verificação do excesso de um vértice sobre o outro vértice:

int VertexAAboveVertexB(int A,int B,bool InternalPoints)

A função VertexAAboveVertexB retorna ao número> = 0, se o topo da onda A excedeu o topo da onda B, caso contrário ela retorna para -1. Se os InternalPoints = verdadeiro, então os pontos internos de ondas (mínimo e (ou) máximo) dos valores das ondas) são tomados em consideração.

5.10.3. WaveAMoreWaveB

A função de verificação do excesso de comprimento de uma onda ao longo do comprimento de uma outra:

int WaveAMoreWaveB(int A,int B)

A função WaveAMoreWaveB retorna um número> = 0 se a onda A é maior que a B, caso contrário, ela retorna para -1.

11. A função de limpar a memória

5.11.1. ClearTree

A função de limpar a árvore de ondas com o nó superior do nó:

void ClearTree(TNode *Node)

5.11.2. ClearNodeInfoArray

A função limpa a matriz ClearNodeInfoArray:

void ClearNodeInfoArray()

5.11.3. ClearZigzagArray

A função para limpeza da matriz ClearNodeInfoArray:

void ClearZigzagArray()

5.12. A função de contornar as ondas da árvore e a emissão dos resultados da análise para o gráfico

Após a conclusão da análise automática das Ondas de Elliott, temos uma árvore de ondas.

O exemplo pode ser apresentado como na figura abaixo:

Figura 16. Um exemplo de uma árvore de ondas
Figura 16. Um exemplo de uma árvore de ondas

Agora, para apresentar os resultados da análise do gráfico, é preciso dar a volta a determinada árvore. Conforme mostrado na Figura 16, há calma para algumas opções (uma vez que existem várias opções de ondas), e cada opção de um desvio leva a uma diferente mark-ups.

Podemos distinguir dois tipos de nós de árvore.

O primeiro tipo - nós com os nomes de onda ("impulso", "Zigue-zague" etc.) O segundo tipo - os nós com o número de onda ("1", "1<", "etc.) Toda a informação sobre os parâmetros de onda é armazenada nos primeiros tipos de nós. Portanto, ao visitar esses nós, vamos recuperar e registrar informações sobre a onda a fim de em seguida apresentá-la no gráfico.

Para simplificar, vamos contornar a árvore, visitando apenas as primeiras versões das ondas.

Um exemplo de contorno é apresentado na Figura 17 e é destacado em vermelho.

Figura 17. Exemplo de contorno de uma árvore de onda
Figura 17. Exemplo de contorno de uma árvore de onda

5.12.1. FillLabelArray

A função de contorno de uma árvore de onda

void FillLabelArray(TNode *Node)

A função FillLabelArray contorna a árvore de onda com o nó raiz atendendo apenas as primeiras versões das ondas na árvore, e, preenche uma LabelArray de matriz global, os índices dos quais, armazenam um link para a matriz de vértices (matriz de objetos da classe TLabel), com o índice dado no gráfico.

A matriz LabelArray é definida como segue:

CArrayObj *LabelArray[];

5.12.2. CreateLabels

A função de exibir os resultados da análise no gráfico:

void CreateLabels()

A função CreateLabels cria os objetos gráficos "Text", correspondente às marcas de onda no gráfico. As marcas das ondas são criadas com base na matriz LabelArray.

5.12.3. CorrectLabel

A função de atualização (correção), dos topos das ondas no gráfico:

void CorrectLabel()

A função CorrectLabel corrige as marcas de onda no gráfico quando é rolada e (ou) durante a sua restrição.

6. A implementação do particionamento automático das Ondas de Elliott

6,1. A função Zigue-zague:

//+------------------------------------------------------------------+
//| The Zigzag function                                              |
//+------------------------------------------------------------------+
int Zigzag(int H,int Start,int Finish,CArrayInt *IndexVertex,CArrayDouble *ValueVertex)
  {
   bool Up=true;
   double dH=H*Point();
   int j=0;
   int TempMaxBar = Start;
   int TempMinBar = Start;
   double TempMax = rates[Start].high;
   double TempMin = rates[Start].low;
   for(int i=Start+1;i<=Finish;i++)
     {
      // processing the case of a rising segment
      if(Up==true)
        {
         // check that the current maximum has not changed
         if(rates[i].high>TempMax)
           {
            // if it has, correct the corresponding variables
            TempMax=rates[i].high;
            TempMaxBar=i;
           }
         else if(rates[i].low<TempMax-dH)
           {
            // otherwise, if the lagged level is broken, fixate the maximum
            ValueVertex.Add(TempMax);
            IndexVertex.Add(TempMaxBar);
            j++;
            // correct the corresponding variables
            Up=false;
            TempMin=rates[i].low;
            TempMinBar=i;
           }
        }
      else
        {
         // processing the case of the descending segment
         // check that the current minimum hasn't changed
         if(rates[i].low<TempMin)
           {
            // if it has, correct the corresponding variables
            TempMin=rates[i].low;
            TempMinBar=i;
           }
         else if(rates[i].high>TempMin+dH)
           {
            // otherwise, if the lagged level is broken, fix the minimum
            ValueVertex.Add(TempMin);
            IndexVertex.Add(TempMinBar);
            j++;
            // correct the corresponding variables
            Up=true;
            TempMax=rates[i].high;
            TempMaxBar=i;
           }
        }
     }
   // return the number of zigzag tops
   return(j);
  }

6.2. A função FillZigzagArray:

CArrayObj *ZigzagArray; // declare the ZigzagArray global dynamic array
//+------------------------------------------------------------------+
//| The FillZigzagArray function                                     |
//| search through the values of the parameter H zigzag              |
//| and fill the array ZigzagArray                                   |
//+------------------------------------------------------------------+
void FillZigzagArray(int Start,int Finish)
  {
   ZigzagArray=new CArrayObj;                       // create the dynamic array of zigzags
   CArrayInt *IndexVertex=new CArrayInt;         // create the dynamic array of indexes of zigzag tops
   CArrayDouble *ValueVertex=new CArrayDouble;   // create the dynamic array of values of the zigzag tops
   TZigzag *Zigzag;                                 // declare the class for storing the indexes and values of the zigzag tops
   int H=1;
   int j=0;
   int n=Zigzag(H,Start,Finish,IndexVertex,ValueVertex);//find the tops of the zigzag with the parameter H=1
   if(n>0)
     {
      // store the tops of the zigzag in the array ZigzagArray
      Zigzag=new TZigzag; // create the object for storing the found indexes and the zigzag tops, 
                             // fill it and store in the array ZigzagArray
      Zigzag.IndexVertex=IndexVertex;
      Zigzag.ValueVertex=ValueVertex;
      ZigzagArray.Add(Zigzag);
      j++;
     }
   H++;
   // loop of the H of the zigzag
   while(true)
     {
      IndexVertex=new CArrayInt;                            // create a dynamic array of indexes of zigzag tops
      ValueVertex=new CArrayDouble;                        // create a dynamic array of values of the zigzag tops
      n=Zigzag(H,Start,Finish,IndexVertex,ValueVertex); // find the tops of the zigzag
      if(n>0)
        {
         Zigzag=ZigzagArray.At(j-1);
         CArrayInt *PrevIndexVertex=Zigzag.IndexVertex; // get the array of indexes of the previous zigzag
         bool b=false;
         // check if there is a difference between the current zigzag and the previous zigzag
         for(int i=0; i<=n-1;i++)
           {
            if(PrevIndexVertex.At(i)!=IndexVertex.At(i))
              {
               // if there is a difference, store the tops of a zigzag in the array ZigzagArray
               Zigzag=new TZigzag;
               Zigzag.IndexVertex=IndexVertex;
               Zigzag.ValueVertex=ValueVertex;
               ZigzagArray.Add(Zigzag);
               j++;
               b=true;
               break;
              }
           }
         if(b==false)
           {
            // otherwise, if there is no difference, release the memory
            delete IndexVertex;
            delete ValueVertex;
           }
        }
      // search for the tops of the zigzag until there is two or less of them
      if(n<=2)
         break;
      H++;
     }
  }

6.3. A função FindPoints:

//+------------------------------------------------------------------+
//| The FindPoints function                                          |
//| Fill the ValuePoints and IndexPoints arrays                      |
//| of the Points structure                                          |
//+------------------------------------------------------------------+
bool FindPoints(int NumPoints,int IndexStart,int IndexFinish,double ValueStart,double ValueFinish,TPoints &Points)
  {
   int n=0;
   // fill the array ZigzagArray
   for(int i=ZigzagArray.Total()-1; i>=0;i--)
     {
      TZigzag *Zigzag=ZigzagArray.At(i);             // the obtained i zigzag in the ZigzagArray
      CArrayInt *IndexVertex=Zigzag.IndexVertex;    // get the array of the indexes of the tops of the i zigzags
      CArrayDouble *ValueVertex=Zigzag.ValueVertex; // get the array of values of the tops of the i zigzag
      int Index1=-1,Index2=-1;
      // search the index of the IndexVertex array, corresponding to the first point
      for(int j=0;j<IndexVertex.Total();j++)
        {
         if(IndexVertex.At(j)>=IndexStart)
           {
            Index1=j;
            break;
           }
        }
      // search the index of the IndexVertex array, corresponding to the last point
      for(int j=IndexVertex.Total()-1;j>=0;j--)
        {
         if(IndexVertex.At(j)<=IndexFinish)
           {
            Index2=j;
            break;
           }
        }
      // if the first and last points were found
      if((Index1!=-1) && (Index2!=-1))
        {
         n=Index2-Index1+1; // find out how many points were found
        }
      // if the required number of points was found (equal or greater)
      if(n>=NumPoints)
        {
         // check that the first and last tops correspond with the required top values
         if(((ValueStart!=0) && (ValueVertex.At(Index1)!=ValueStart)) || 
            ((ValueFinish!=0) && (ValueVertex.At(Index1+n-1)!=ValueFinish)))continue;
         // fill the Points structure, passed as a parameter
         Points.NumPoints=n;
         ArrayResize(Points.ValuePoints, n);
         ArrayResize(Points.IndexPoints, n);
         int k=0;
         // fill the ValuePoints and IndexPoints arrays of Points structure
         for(int j=Index1; j<Index1+n;j++)
           {
            Points.ValuePoints[k]=ValueVertex.At(j);
            Points.IndexPoints[k]=IndexVertex.At(j);
            k++;
           }
         return(true);
        };
     };
   return(false);
  };

6.4. A função NotStartedAndNotFinishedWaves:

//+------------------------------------------------------------------+
//| The NotStartedAndNotFinishedWaves function                       |
//+------------------------------------------------------------------+
void NotStartedAndNotFinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)
  {
   int v1,v2,v3,v4,I;
   TPoints Points;
   TNode *ParentNode,*ChildNode;
   int IndexWave;
   string NameWave;
   TWave *Wave;
   int i=0,pos=0,start=0;
   // Put the waves, which we will be analyzing to the ListNameWave array
   string ListNameWave[];
   ArrayResize(ListNameWave,ArrayRange(WaveDescription,0));
   while(pos!=StringLen(Subwaves)-1)
     {
      pos=StringFind(Subwaves,",",start);
      NameWave=StringSubstr(Subwaves,start,pos-start);
      ListNameWave[i++]=NameWave;
      start=pos+1;
     }
   int IndexStart=ParentWave.IndexVertex[NumWave-1];
   int IndexFinish=ParentWave.IndexVertex[NumWave];
   double ValueStart = ParentWave.ValueVertex[NumWave - 1];
   double ValueFinish= ParentWave.ValueVertex[NumWave];
   // find no less than two points on the price chart and put them into the structure Points
   // if they are not found, then exit the function
   if(FindPoints(2,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unbegun and incomplete waves with the formula "1<-2-3>"
   v1=0;
   while(v1<=Points.NumPoints-2)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-1)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from the ListNameWave
            NameWave=ListNameWave[j++];
            // find the index of the wave in the structure WaveDescription in order to
              // find out the number of its sub-waves and their names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if((WaveDescription[IndexWave].NumWave==5) || (WaveDescription[IndexWave].NumWave==3))
              {
               // create the object of TWave class and fill its fields - parameters of the analyzed waves
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="1<-2-3>";
               Wave.ValueVertex[0] = 0;
               Wave.ValueVertex[1] = Points.ValuePoints[v1];
               Wave.ValueVertex[2] = Points.ValuePoints[v2];
               Wave.ValueVertex[3] = 0;
               Wave.ValueVertex[4] = 0;
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = IndexStart;
               Wave.IndexVertex[1] = Points.IndexPoints[v1];
               Wave.IndexVertex[2] = Points.IndexPoints[v2];
               Wave.IndexVertex[3] = IndexFinish;
               Wave.IndexVertex[4] = 0;
               Wave.IndexVertex[5] = 0;
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if a wave passed the check by rules, add it into the wave tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=1;
                  // create the first sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the second sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create a third sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass by the rules, release memory
               else delete Wave;
              }
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // the loop of unbegun and unfinished waves with the formula "2<-3-4>"
   v2=0;
   while(v2<=Points.NumPoints-2)
     {
      v3=v2+1;
      while(v3<=Points.NumPoints-1)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from the ListNameWave
            NameWave=ListNameWave[j++];
            // find the index of the wave in the WaveDescription structure in order to know the number of its symbols and its names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if(WaveDescription[IndexWave].NumWave==5)
              {
               // create the object of TWave class and fill its fields - parameters of the analyzed wave
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="2<-3-4>";
               Wave.ValueVertex[0] = 0;
               Wave.ValueVertex[1] = 0;
               Wave.ValueVertex[2] = Points.ValuePoints[v2];
               Wave.ValueVertex[3] = Points.ValuePoints[v3];
               Wave.ValueVertex[4] = 0;
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = 0;
               Wave.IndexVertex[1] = IndexStart;
               Wave.IndexVertex[2] = Points.IndexPoints[v2];
               Wave.IndexVertex[3] = Points.IndexPoints[v3];
               Wave.IndexVertex[4] = IndexFinish;
               Wave.IndexVertex[5] = 0;
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check for rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=2;
                  // create the second sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the third sub-wave in th waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the fourth sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass the check by rules, release memory
               else delete Wave;
              }
           }
         v3=v3+2;
        }
      v2=v2+2;
     }
   // the loop of the unbegun and the incomplete waves with the formula "3<-4-5>"
   v3=0;
   while(v3<=Points.NumPoints-2)
     {
      v4=v3+1;
      while(v4<=Points.NumPoints-1)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from the ListNameWave
            NameWave=ListNameWave[j++]; 
            // find the index of the wave in the WaveDescription structure in order to
              // find out the number of its symbols and their names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if(WaveDescription[IndexWave].NumWave==5)
              {
               // create the object of TWave class and fill its fields - parameters of the analyzed wave
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="3<-4-5>";
               Wave.ValueVertex[0] = 0;
               Wave.ValueVertex[1] = 0;
               Wave.ValueVertex[2] = 0;
               Wave.ValueVertex[3] = Points.ValuePoints[v3];
               Wave.ValueVertex[4] = Points.ValuePoints[v4];
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = 0;
               Wave.IndexVertex[1] = 0;
               Wave.IndexVertex[2] = IndexStart;
               Wave.IndexVertex[3] = Points.IndexPoints[v3];
               Wave.IndexVertex[4] = Points.IndexPoints[v4];
               Wave.IndexVertex[5] = IndexFinish;
               // check the wave for the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check by the rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=3;
                  // create the third sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the fourth sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the fifth sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the fifth wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave has not passed the check by the rules, release the memory
               else delete Wave;
              }
           }
         v4=v4+2;
        }
      v3=v3+2;
     }
   // find no less than three points on the price chart and put them in the Points structure
   // if they were not found, then exit the function
   if(FindPoints(3,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false) return;
   // the loop of unbegun and unfinished waved with the formula "1<-2-3-4>"
   v1=0;
   while(v1<=Points.NumPoints-3)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-2)
        {
         v3=v2+1;
         while(v3<=Points.NumPoints-1)
           {
            int j=0;
            while(j<=i-1)
              {
               // get the name of the wave for analysis from the ListNameWave
               NameWave=ListNameWave[j++];
               // find the index of the wave in the WaveDescription structure in order to know the number of its sub-waves and their names
               IndexWave=FindWaveInWaveDescription(NameWave);
               if(WaveDescription[IndexWave].NumWave==5)
                 {
                  // create an object of TWave class and fill its fields - parameters of the analyzed wave
                  Wave=new TWave;
                  Wave.Name=NameWave;
                  Wave.Level=Level;
                  Wave.Formula="1<-2-3-4>";
                  Wave.ValueVertex[0] = 0;
                  Wave.ValueVertex[1] = Points.ValuePoints[v1];
                  Wave.ValueVertex[2] = Points.ValuePoints[v2];
                  Wave.ValueVertex[3] = Points.ValuePoints[v3];
                  Wave.ValueVertex[4] = 0;
                  Wave.ValueVertex[5] = 0;
                  Wave.IndexVertex[0] = IndexStart;
                  Wave.IndexVertex[1] = Points.IndexPoints[v1];
                  Wave.IndexVertex[2] = Points.IndexPoints[v2];
                  Wave.IndexVertex[3] = Points.IndexPoints[v3];
                  Wave.IndexVertex[4] = IndexFinish;
                  Wave.IndexVertex[5] = 0;
                  // check the wave by the rules
                  if(WaveRules(Wave)==true)
                    {
                     // if the wave passed the check by the rules, add it to the waves tree
                     ParentNode=Node.Add(NameWave,Wave);
                     I=1;
                     // create the first sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the second sub-wave in the waved tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the third sub-wave in the waves
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fourth sub-wave of the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                    }
                  // otherwise, if the wave did not pass by the rules, release the memory
                  else delete Wave;
                 }
              }
            v3=v3+2;
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // the loop of unbegun and unfinished waves with the formula "2<-3-4-5>"
   v2=0;
   while(v2<=Points.NumPoints-3)
     {
      v3=v2+1;
      while(v3<=Points.NumPoints-2)
        {
         v4=v3+1;
         while(v4<=Points.NumPoints-1)
           {
            int j=0;
            while(j<=i-1)
              {
               // get the name of the wave for analysis from the ListNameWave
               NameWave=ListNameWave[j++];
               // find the index of the wave in the WaveDescription structure in order to know the number of the symbols and their names
               IndexWave=FindWaveInWaveDescription(NameWave);
               if(WaveDescription[IndexWave].NumWave==5)
                 {
                  // create the object of TWave class and fill its fields - parameters of the analyzed wave
                  Wave=new TWave;
                  Wave.Name=NameWave;
                  Wave.Level=Level;
                  Wave.Formula="2<-3-4-5>";
                  Wave.ValueVertex[0] = 0;
                  Wave.ValueVertex[1] = 0;
                  Wave.ValueVertex[2] = Points.ValuePoints[v2];
                  Wave.ValueVertex[3] = Points.ValuePoints[v3];
                  Wave.ValueVertex[4] = Points.ValuePoints[v4];
                  Wave.ValueVertex[5] = 0;
                  Wave.IndexVertex[0] = 0;
                  Wave.IndexVertex[1] = IndexStart;
                  Wave.IndexVertex[2] = Points.IndexPoints[v2];
                  Wave.IndexVertex[3] = Points.IndexPoints[v3];
                  Wave.IndexVertex[4] = Points.IndexPoints[v4];
                  Wave.IndexVertex[5] = IndexFinish;
                  // check the wave by the rules
                  if(WaveRules(Wave)==true)
                    {
                     // if the wave passed the check by the rules, add it to the waves tree
                     ParentNode=Node.Add(NameWave,Wave);
                     I=2;
                     // create the second sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the third sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fourth sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fifth sub-wave in the waved tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                    }
                  // otherwise, if the wave has not passed by the rules, release the memory
                  else delete Wave;
                 }
              }
            v4=v4+2;
           }
         v3=v3+2;
        }
      v2=v2+2;
     }
   // find no less than four point on the price chart and put them into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(4,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false) return;
   // the loop of unbegun and unfinished waves with the formula "1<-2-3-4-5>"
   v1=0;
   while(v1<=Points.NumPoints-4)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-3)
        {
         v3=v2+1;
         while(v3<=Points.NumPoints-2)
           {
            v4=v3+1;
            while(v4<=Points.NumPoints-1)
              {
               int j=0;
               while(j<=i-1)
                 {
                  // get the name of the wave for analysis from the ListNameWave
                  NameWave=ListNameWave[j++];
                  // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
                  IndexWave=FindWaveInWaveDescription(NameWave);
                  if(WaveDescription[IndexWave].NumWave==5)
                    {
                     // create the object TWave class and fill its fields - parameters of the analyzed wave
                     Wave=new TWave;
                     Wave.Name=NameWave;
                     Wave.Level=Level;
                     Wave.Formula="1<-2-3-4-5>";
                     Wave.ValueVertex[0] = 0;
                     Wave.ValueVertex[1] = Points.ValuePoints[v1];
                     Wave.ValueVertex[2] = Points.ValuePoints[v2];
                     Wave.ValueVertex[3] = Points.ValuePoints[v3];
                     Wave.ValueVertex[4] = Points.ValuePoints[v4];
                     Wave.ValueVertex[5] = 0;
                     Wave.IndexVertex[0] = IndexStart;
                     Wave.IndexVertex[1] = Points.IndexPoints[v1];
                     Wave.IndexVertex[2] = Points.IndexPoints[v2];
                     Wave.IndexVertex[3] = Points.IndexPoints[v3];
                     Wave.IndexVertex[4] = Points.IndexPoints[v4];
                     Wave.IndexVertex[5] = IndexFinish;
                     // check the wave by the rules
                     if(WaveRules(Wave)==true)
                       {
                        // if the wave passed the check by the rules, add it to the waves tree
                        ParentNode=Node.Add(NameWave,Wave);
                        I=1;
                        // create the first sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the first sub-wave has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the second sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the third sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fourth sub-wave in the waved tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the 5th sub-wave in the wave tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                       }
                     // otherwise, if the wave did not pass the check by the rules, release the memory
                     else delete Wave;
                    }
                 }
               v4=v4+2;
              }
            v3=v3+2;
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // find no less than one point on the price chart and record it into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(1,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unbegun and unfinished waves with the formula "1<-2>"
   v1=0;
   while(v1<=Points.NumPoints-1)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==5 || WaveDescription[IndexWave].NumWave==3)
           {
            // create the object of TWave class and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="1<-2>";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = Points.ValuePoints[v1];
            Wave.ValueVertex[2] = 0;
            Wave.ValueVertex[3] = 0;
            Wave.ValueVertex[4] = 0;
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = IndexStart;
            Wave.IndexVertex[1] = Points.IndexPoints[v1];
            Wave.IndexVertex[2] = IndexFinish;
            Wave.IndexVertex[3] = 0;
            Wave.IndexVertex[4] = 0;
            Wave.IndexVertex[5] = 0;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=1;
               // create the first sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the second sub-wave in the waved tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass the check by the rules, release the memory
            else delete Wave;
           }
        }
      v1=v1+1;
     }
   // loop the unbegun and unfinished waves with the formula "2<-3>"
   v2=0;
   while(v2<=Points.NumPoints-1)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the structure WaveDescription, in order to know the number of its sub-waves and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==5 || WaveDescription[IndexWave].NumWave==3)
           {
            // create the object of TWave class and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="2<-3>";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = 0;
            Wave.ValueVertex[2] = Points.ValuePoints[v2];
            Wave.ValueVertex[3] = 0;
            Wave.ValueVertex[4] = 0;
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = 0;
            Wave.IndexVertex[1] = IndexStart;
            Wave.IndexVertex[2] = Points.IndexPoints[v2];
            Wave.IndexVertex[3] = IndexFinish;
            Wave.IndexVertex[4] = 0;
            Wave.IndexVertex[5] = 0;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=2;
               // create the second sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the third sub-wave in the waved tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass by the rules, release the memory
            else delete Wave;
           }
        }
      v2=v2+1;
     }
   // the loop of unbegun and unfinished waves with the formula "3<-4>"
   v3=0;
   while(v3<=Points.NumPoints-1)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure on order to know the number of sub-waved and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==5)
           {
            // create the object of TWave class and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="3<-4>";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = 0;
            Wave.ValueVertex[2] = 0;
            Wave.ValueVertex[3] = Points.ValuePoints[v3];
            Wave.ValueVertex[4] = 0;
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = 0;
            Wave.IndexVertex[1] = 0;
            Wave.IndexVertex[2] = IndexStart;
            Wave.IndexVertex[3] = Points.IndexPoints[v3];
            Wave.IndexVertex[4] = IndexFinish;
            Wave.IndexVertex[5] = 0;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=3;
               // create the third sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the fourth sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass by the rules, release the memory
            else delete Wave;
           }
        }
      v3=v3+1;
     }
   // the loop of unbegun and unfinished waves with the formula "4<-5>"
   v4=0;
   while(v4<=Points.NumPoints-1)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure in order to know the number of symbols and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==5)
           {
            // create the object of TWave class and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="4<-5>";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = 0;
            Wave.ValueVertex[2] = 0;
            Wave.ValueVertex[3] = 0;
            Wave.ValueVertex[4] = Points.ValuePoints[v4];
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = 0;
            Wave.IndexVertex[1] = 0;
            Wave.IndexVertex[2] = 0;
            Wave.IndexVertex[3] = IndexStart;
            Wave.IndexVertex[4] = Points.IndexPoints[v4];
            Wave.IndexVertex[5] = IndexFinish;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=4;
               // create the fourth sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the fifth sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass by the rules, release the memory
            else delete Wave;
           }
        }
      v4=v4+1;
     }
  }

6.5. A função NotStartedWaves:

//+------------------------------------------------------------------+
//| The function NotStartedWaves                                          |
//+------------------------------------------------------------------+
void NotStartedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)
  {
   int v1,v2,v3,v4,v5,I;
   TPoints Points;
   TNode *ParentNode,*ChildNode;
   int IndexWave;
   string NameWave;
   TWave *Wave;
   int i=0,Pos=0,Start=0;
   // Put the waves, which we will be analyzing to the ListNameWave array
   string ListNameWave[];
   ArrayResize(ListNameWave,ArrayRange(WaveDescription,0));
   while(Pos!=StringLen(Subwaves)-1)
     {
      Pos=StringFind(Subwaves,",",Start);
      NameWave=StringSubstr(Subwaves,Start,Pos-Start);
      ListNameWave[i++]=NameWave;
      Start=Pos+1;
     }
   int IndexStart=ParentWave.IndexVertex[NumWave-1];
   int IndexFinish=ParentWave.IndexVertex[NumWave];
   double ValueStart = ParentWave.ValueVertex[NumWave - 1];
   double ValueFinish= ParentWave.ValueVertex[NumWave];
   // find no less than two points on the price chart and put them into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(2,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // loop the unbegun waves with the formula "4<-5"
   v5=Points.NumPoints-1;
   v4=v5-1;
   while(v4>=0)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure in order to know the number of its sub-waves and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==5)
           {
            // create the object of class TWave and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="4<-5";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = 0;
            Wave.ValueVertex[2] = 0;
            Wave.ValueVertex[3] = 0;
            Wave.ValueVertex[4] = Points.ValuePoints[v4];
            Wave.ValueVertex[5] = Points.ValuePoints[v5];
            Wave.IndexVertex[0] = 0;
            Wave.IndexVertex[1] = 0;
            Wave.IndexVertex[2] = 0;
            Wave.IndexVertex[3] = IndexStart;
            Wave.IndexVertex[4] = Points.IndexPoints[v4];
            Wave.IndexVertex[5] = Points.IndexPoints[v5];
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=4;
               // create the fourth sub-wave in the wave tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create 5th sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass the check by the rules, release the memory
            else delete Wave;
           }
        }
      v4=v4-2;
     }
   // loop the unbegun waves with the formula "2<-3"
   v3=Points.NumPoints-1;
   v2=v3-1;
   while(v2>=0)
     {
      int j=0;
      while(j<=i-1)
        {
         // in turn, from the ListNameWave, draw the name of the wave for analysis
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if(WaveDescription[IndexWave].NumWave==3)
           {
            // create the object of class TWave and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="2<-3";
            Wave.ValueVertex[0] = 0;
            Wave.ValueVertex[1] = 0;
            Wave.ValueVertex[2] = Points.ValuePoints[v2];
            Wave.ValueVertex[3] = Points.ValuePoints[v3];
            Wave.ValueVertex[4] = 0;
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = 0;
            Wave.IndexVertex[1] = IndexStart;
            Wave.IndexVertex[2] = Points.IndexPoints[v2];
            Wave.IndexVertex[3] = Points.IndexPoints[v3];
            Wave.IndexVertex[4] = 0;
            Wave.IndexVertex[5] = 0;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=2;
               // create the second sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the third sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass by the rules, release the memory
            else delete Wave;
           }
        }
      v2=v2-2;
     }
   // find not less than three points on the price chart and put them into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(3,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // loop the unbegun waves with the formula "3<-4-5"
   v5=Points.NumPoints-1;
   v4=v5-1;
   while(v4>=1)
     {
      v3=v4-1;
      while(v3>=0)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from ListNameWave
            NameWave=ListNameWave[j++];
            // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if(WaveDescription[IndexWave].NumWave==5)
              {
               // create the object of class TWave and fill its fields - parameters of the analyzed wave
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="3<-4-5";
               Wave.ValueVertex[0] = 0;
               Wave.ValueVertex[1] = 0;
               Wave.ValueVertex[2] = 0;
               Wave.ValueVertex[3] = Points.ValuePoints[v3];
               Wave.ValueVertex[4] = Points.ValuePoints[v4];
               Wave.ValueVertex[5] = Points.ValuePoints[v5];
               Wave.IndexVertex[0] = 0;
               Wave.IndexVertex[1] = 0;
               Wave.IndexVertex[2] = IndexStart;
               Wave.IndexVertex[3] = Points.IndexPoints[v3];
               Wave.IndexVertex[4] = Points.IndexPoints[v4];
               Wave.IndexVertex[5] = Points.IndexPoints[v5];
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check by the rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=3;
                  // create the three sub-waves in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the fourth sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the fifth sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass by the rules, release the memory
               else delete Wave;
              }
           }
         v3=v3-2;
        }
      v4=v4-2;
     }
   // the loop of the unbegun waves with the formula "1<-2-3"
   v3=Points.NumPoints-1;
   v2=v3-1;
   while(v2>=1)
     {
      v1=v2-1;
      while(v1>=0)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from ListNameWave
            NameWave=ListNameWave[j++];
            // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if(WaveDescription[IndexWave].NumWave==3)
              {
               // create the object of class TWave and fill its fields - parameters of the analyzed wave
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="1<-2-3";
               Wave.ValueVertex[0] = 0;
               Wave.ValueVertex[1] = Points.ValuePoints[v1];
               Wave.ValueVertex[2] = Points.ValuePoints[v2];
               Wave.ValueVertex[3] = Points.ValuePoints[v3];
               Wave.ValueVertex[4] = 0;
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = IndexStart;
               Wave.IndexVertex[1] = Points.IndexPoints[v1];
               Wave.IndexVertex[2] = Points.IndexPoints[v2];
               Wave.IndexVertex[3] = Points.IndexPoints[v3];
               Wave.IndexVertex[4] = 0;
               Wave.IndexVertex[5] = 0;
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check by the rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=1;
                  // create the first sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  //if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the second sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  //if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the third sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass by the rules, release the memory
               else delete Wave;
              }
           }
         v1=v1-2;
        }
      v2=v2-2;
     }
   // find no less than four points on the price chart and put them into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(4,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unbegun waves with the formula "2<-3-4-5"
   v5=Points.NumPoints-1;
   v4=v5-1;
   while(v4>=2)
     {
      v3=v4-1;
      while(v3>=1)
        {
         v2=v3-1;
         while(v2>=0)
           {
            int j=0;
            while(j<=i-1)
              {
               // in turn, from the ListNameWave, draw the name of the wave for analysis
               NameWave=ListNameWave[j++];
               // find the index of the wave in the WaveDescription structure in order to know the number of its sub-waves and their names
               IndexWave=FindWaveInWaveDescription(NameWave);
               if(WaveDescription[IndexWave].NumWave==5)
                 {
                  // create the object of class TWave and fill its fields - parameters of the analyzed wave
                  Wave=new TWave;
                  Wave.Name=NameWave;
                  Wave.Level=Level;
                  Wave.Formula="2<-3-4-5";
                  Wave.ValueVertex[0] = 0;
                  Wave.ValueVertex[1] = 0;
                  Wave.ValueVertex[2] = Points.ValuePoints[v2];
                  Wave.ValueVertex[3] = Points.ValuePoints[v3];
                  Wave.ValueVertex[4] = Points.ValuePoints[v4];
                  Wave.ValueVertex[5] = Points.ValuePoints[v5];
                  Wave.IndexVertex[0] = 0;
                  Wave.IndexVertex[1] = IndexStart;
                  Wave.IndexVertex[2] = Points.IndexPoints[v2];
                  Wave.IndexVertex[3] = Points.IndexPoints[v3];
                  Wave.IndexVertex[4] = Points.IndexPoints[v4];
                  Wave.IndexVertex[5] = Points.IndexPoints[v5];
                  // check the wave by the rules
                  if(WaveRules(Wave)==true)
                    {
                     // if the wave passed the check by the rules, add it to the waves tree
                     ParentNode=Node.Add(NameWave,Wave);
                     I=2;
                     // create the second sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the third sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fourth sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fifth sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                    }
                  // otherwise, if the wave has not passed the rules, release the memory
                  else delete Wave;
                 }
              }
            v2=v2-2;
           }
         v3=v3-2;
        }
      v4=v4-2;
     }
   // find no less than five points on the price chart and record it into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(5,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unbegun waves with the formula "1<-2-3-4-5"
   v5=Points.NumPoints-1;
   v4=v5-1;
   while(v4>=3)
     {
      v3=v4-1;
      while(v3>=2)
        {
         v2=v3-1;
         while(v2>=1)
           {
            v1=v2-1;
            while(v1>=0)
              {
               int j=0;
               while(j<=i-1)
                 {
                  // in turn, from the ListNameWave, draw the name of the wave for analysis
                  NameWave=ListNameWave[j++];
                  // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
                  IndexWave=FindWaveInWaveDescription(NameWave);
                  if(WaveDescription[IndexWave].NumWave==5)
                    {
                     // create the object of class TWave and fill its fields - parameters of the analyzed wave
                     Wave=new TWave;
                     Wave.Name=NameWave;
                     Wave.Level=Level;
                     Wave.Formula="1<-2-3-4-5";
                     Wave.ValueVertex[0] = 0;
                     Wave.ValueVertex[1] = Points.ValuePoints[v1];
                     Wave.ValueVertex[2] = Points.ValuePoints[v2];
                     Wave.ValueVertex[3] = Points.ValuePoints[v3];
                     Wave.ValueVertex[4] = Points.ValuePoints[v4];
                     Wave.ValueVertex[5] = Points.ValuePoints[v5];
                     Wave.IndexVertex[0] = IndexStart;
                     Wave.IndexVertex[1] = Points.IndexPoints[v1];
                     Wave.IndexVertex[2] = Points.IndexPoints[v2];
                     Wave.IndexVertex[3] = Points.IndexPoints[v3];
                     Wave.IndexVertex[4] = Points.IndexPoints[v4];
                     Wave.IndexVertex[5] = Points.IndexPoints[v5];
                     // check the wave by the rules
                     if(WaveRules(Wave)==true)
                       {
                        // if the wave passed the check by the rules, add it to the waves tree
                        ParentNode=Node.Add(NameWave,Wave);
                        I=1;
                        // create the first sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           NotStartedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the second sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the third sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fourth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fifth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the chart, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                       }
                     // otherwise, if the wave did not pass by the rules, release the memory
                     else delete Wave;
                    }
                 }
               v1=v1-2;
              }
            v2=v2-2;
           }
         v3=v3-2;
        }
      v4=v4-2;
     }
  }

6.6. A função NotFinishedWaves:

//+------------------------------------------------------------------+
//| The function FinishedWaves                                         |
//+------------------------------------------------------------------+
void NotFinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)
  {
   int v0,v1,v2,v3,v4,I;
   TPoints Points;
   TNode *ParentNode,*ChildNode;
   int IndexWave;
   string NameWave;
   TWave *Wave;
   int i=0,Pos=0,Start=0;
   //we put the waves, which we will be analyzing in the array ListNameWaveg
   string ListNameWave[];
   ArrayResize(ListNameWave,ArrayRange(WaveDescription,0));
   while(Pos!=StringLen(Subwaves)-1)
     {
      Pos=StringFind(Subwaves,",",Start);
      NameWave=StringSubstr(Subwaves,Start,Pos-Start);
      ListNameWave[i++]=NameWave;
      Start=Pos+1;
     }
   int IndexStart=ParentWave.IndexVertex[NumWave-1];
   int IndexFinish=ParentWave.IndexVertex[NumWave];
   double ValueStart = ParentWave.ValueVertex[NumWave - 1];
   double ValueFinish= ParentWave.ValueVertex[NumWave];
   // find not less than two points on the price chart and record it into the structure Points
   // if we didn't find any, then exit the function
   if(FindPoints(2,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unfinished waves with the formula "1-2>"
   v0=0;
   v1=v0+1;
   while(v1<=Points.NumPoints-1)
     {
      int j=0;
      while(j<=i-1)
        {
         // get the name of the wave for analysis from the ListNameWave
         NameWave=ListNameWave[j++];
         // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
         IndexWave=FindWaveInWaveDescription(NameWave);
         if((WaveDescription[IndexWave].NumWave==5) || (WaveDescription[IndexWave].NumWave==3))
           {
            // create the object of TWave class and fill its fields - parameters of the analyzed wave
            Wave=new TWave;
            Wave.Name=NameWave;
            Wave.Level=Level;
            Wave.Formula="1-2>";
            Wave.ValueVertex[0] = Points.ValuePoints[v0];
            Wave.ValueVertex[1] = Points.ValuePoints[v1];
            Wave.ValueVertex[2] = 0;
            Wave.ValueVertex[3] = 0;
            Wave.ValueVertex[4] = 0;
            Wave.ValueVertex[5] = 0;
            Wave.IndexVertex[0] = Points.IndexPoints[v0];
            Wave.IndexVertex[1] = Points.IndexPoints[v1];
            Wave.IndexVertex[2] = IndexFinish;
            Wave.IndexVertex[3] = 0;
            Wave.IndexVertex[4] = 0;
            Wave.IndexVertex[5] = 0;
            // check the wave by the rules
            if(WaveRules(Wave)==true)
              {
               // if the wave passed the check by the rules, add it to the waves tree
               ParentNode=Node.Add(NameWave,Wave);
               I=1;
               // create the first sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
               I++;
               // create the second sub-wave in the waves tree
               ChildNode=ParentNode.Add(IntegerToString(I));
               // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
               if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                  NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
              }
            // otherwise, if the wave did not pass by the rules, release the memory
            else delete Wave;
           }
        }
      v1=v1+2;
     }
   // find no less than three points on the price chart and put it into the Points structure
   // if none were found, then exit the function
   if(FindPoints(3,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unfinished waves with the formula "1-2-3>"
   v0=0;
   v1=v0+1;
   while(v1<=Points.NumPoints-2)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-1)
        {
         int j=0;
         while(j<=i-1)
           {
            // get the name of the wave for analysis from ListNameWave
            NameWave=ListNameWave[j++];
            // find the index of the wave in the WaveDescription structure in order to know the number of sub-waves and their names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if((WaveDescription[IndexWave].NumWave==5) || (WaveDescription[IndexWave].NumWave==3))
              {
               // create the object of TWave class and fill its fields - parameters of the analyzed wave
               Wave=new TWave;
               Wave.Name=NameWave;
               Wave.Level=Level;
               Wave.Formula="1-2-3>";
               Wave.ValueVertex[0] = Points.ValuePoints[v0];
               Wave.ValueVertex[1] = Points.ValuePoints[v1];
               Wave.ValueVertex[2] = Points.ValuePoints[v2];
               Wave.ValueVertex[3] = 0;
               Wave.ValueVertex[4] = 0;
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = Points.IndexPoints[v0];
               Wave.IndexVertex[1] = Points.IndexPoints[v1];
               Wave.IndexVertex[2] = Points.IndexPoints[v2];
               Wave.IndexVertex[3] = IndexFinish;
               Wave.IndexVertex[4] = 0;
               Wave.IndexVertex[5] = 0;
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check by the rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=1;
                  // create the first sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the second sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the third sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, of the corresponding third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass by the rules, release the memory
               else delete Wave;
              }
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // find no less than four points on the price chart and record it into the Points structure
   // if none were found, then exit the function
   if(FindPoints(4,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false) return;
   // the loop of unfinished waves with the formula "1-2-3-4>"
   v0=0;
   v1=v0+1;
   while(v1<=Points.NumPoints-3)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-2)
        {
         v3=v2+1;
         while(v3<=Points.NumPoints-1)
           {
            int j=0;
            while(j<=i-1)
              {
               // get the name of the wave for analysis from ListNameWave
               NameWave=ListNameWave[j++];
               // find the index of the wave in WaveDescription structure in order to know the number of sub-waves and the names
               IndexWave=FindWaveInWaveDescription(NameWave);
               if(WaveDescription[IndexWave].NumWave==5)
                 {
                  // create the object of TWave class and fill its fields - parameters of the analyzed wave
                  Wave=new TWave;
                  Wave.Name=NameWave;
                  Wave.Level=Level;
                  Wave.Formula="1-2-3-4>";
                  Wave.ValueVertex[0] = Points.ValuePoints[v0];
                  Wave.ValueVertex[1] = Points.ValuePoints[v1];
                  Wave.ValueVertex[2] = Points.ValuePoints[v2];
                  Wave.ValueVertex[3] = Points.ValuePoints[v3];
                  Wave.ValueVertex[4] = 0;
                  Wave.ValueVertex[5] = 0;
                  Wave.IndexVertex[0] = Points.IndexPoints[v0];
                  Wave.IndexVertex[1] = Points.IndexPoints[v1];
                  Wave.IndexVertex[2] = Points.IndexPoints[v2];
                  Wave.IndexVertex[3] = Points.IndexPoints[v3];
                  Wave.IndexVertex[4] = IndexFinish;
                  Wave.IndexVertex[5] = 0;
                  // check the wave by the rules
                  if(WaveRules(Wave)==true)
                    {
                     // if the wave passed the check for the rules, add it to the waves tree
                     ParentNode=Node.Add(NameWave,Wave);
                     I=1;
                     // create the first sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the second sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the third sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                     I++;
                     // create the fourth sub-wave in the waves tree
                     ChildNode=ParentNode.Add(IntegerToString(I));
                     // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                     if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                        NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                    }
                  // otherwise, if the wave didn't pass by the rules, release the memory
                  else delete Wave;
                 }
              }
            v3=v3+2;
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // find no less than five points on the price chart and put them into the structure Points
   // if none were found, exit the function
   if(FindPoints(5,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of unfinished waves with the formula "1-2-3-4-5>"
   v0=0;
   v1=v0+1;
   while(v1<=Points.NumPoints-4)
     {
      v2=v1+1;
      while(v2<=Points.NumPoints-3)
        {
         v3=v2+1;
         while(v3<=Points.NumPoints-2)
           {
            v4=v3+1;
            while(v4<=Points.NumPoints-1)
              {
               int j=0;
               while(j<=i-1)
                 {
                  // get the name of the wave for analysis from ListNameWave
                  NameWave=ListNameWave[j++];
                  // find the index of the wave in the WaveDescription structure in order to know the number of its sub-waves and their names
                  IndexWave=FindWaveInWaveDescription(NameWave);
                  if(WaveDescription[IndexWave].NumWave==5)
                    {
                     // create the object of TWave class and fill its fields - parameters of the analyzed wave
                     Wave=new TWave;
                     Wave.Name=NameWave;
                     Wave.Level=Level;
                     Wave.Formula="1-2-3-4-5>";
                     Wave.ValueVertex[0] = Points.ValuePoints[v0];
                     Wave.ValueVertex[1] = Points.ValuePoints[v1];
                     Wave.ValueVertex[2] = Points.ValuePoints[v2];
                     Wave.ValueVertex[3] = Points.ValuePoints[v3];
                     Wave.ValueVertex[4] = Points.ValuePoints[v4];
                     Wave.ValueVertex[5] = 0;
                     Wave.IndexVertex[0] = Points.IndexPoints[v0];
                     Wave.IndexVertex[1] = Points.IndexPoints[v1];
                     Wave.IndexVertex[2] = Points.IndexPoints[v2];
                     Wave.IndexVertex[3] = Points.IndexPoints[v3];
                     Wave.IndexVertex[4] = Points.IndexPoints[v4];
                     Wave.IndexVertex[5] = IndexFinish;
                     // check the wave by the rules
                     if(WaveRules(Wave)==true)
                       {
                        // if the wave passed the check by the rules, add it to the waves tree
                        ParentNode=Node.Add(NameWave,Wave);
                        I=1;
                        // create the first sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the second sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the third sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fourth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fifth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           NotFinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                       }
                     // otherwise, if the wave did not pass by the rules, release the memory
                     else delete Wave;
                    }
                 }
               v4=v4+2;
              }
            v3=v3+2;
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
  }

6.7. A função FinishedWaves:

//+------------------------------------------------------------------+
//| The FinishedWaves function                                       |
//+------------------------------------------------------------------+
void FinishedWaves(TWave *ParentWave,int NumWave,TNode *Node,string Subwaves,int Level)
  {
   int v0,v1,v2,v3,v4,v5,I;
   TPoints Points;
   TNode *ParentNode,*ChildNode;
   int IndexWave;
   string NameWave;
   TWave *Wave;
   int i=0,Pos=0,Start=0;
   // Put the waves, which we will be analyzing to the ListNameWave array
   string ListNameWave[];
   ArrayResize(ListNameWave,ArrayRange(WaveDescription,0));
   while(Pos!=StringLen(Subwaves)-1)
     {
      Pos=StringFind(Subwaves,",",Start);
      NameWave=StringSubstr(Subwaves,Start,Pos-Start);
      ListNameWave[i++]=NameWave;
      Start=Pos+1;
     }
   int IndexStart=ParentWave.IndexVertex[NumWave-1];
   int IndexFinish=ParentWave.IndexVertex[NumWave];
   double ValueStart = ParentWave.ValueVertex[NumWave - 1];
   double ValueFinish= ParentWave.ValueVertex[NumWave];
   // find no less than four points on the price chart and put them into the structure Points
   // if none were found, then exit the function
   if(FindPoints(4,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false) return;
   // the loop of complete waves with the formula "1-2-3"
   v0 = 0;
   v1 = 1;
   v3 = Points.NumPoints - 1;
   while(v1<=v3-2)
     {
      v2=v1+1;
      while(v2<=v3-1)
        {
         int j=0;
         while(j<=i-1)
           {
            // in tuen, from ListNameWave, draw the name of the wave for analysis
            NameWave=ListNameWave[j++];
            // find the index of the wave in the structure WaveDescription in order to know the number of sub-waves and its names
            IndexWave=FindWaveInWaveDescription(NameWave);
            if(WaveDescription[IndexWave].NumWave==3)
              {
               // create the object of class TWave and fill its fields - parameters of the analyzed wave
               Wave=new TWave;;
               Wave.Name=NameWave;
               Wave.Formula="1-2-3";
               Wave.Level=Level;
               Wave.ValueVertex[0] = Points.ValuePoints[v0];
               Wave.ValueVertex[1] = Points.ValuePoints[v1];
               Wave.ValueVertex[2] = Points.ValuePoints[v2];
               Wave.ValueVertex[3] = Points.ValuePoints[v3];
               Wave.ValueVertex[4] = 0;
               Wave.ValueVertex[5] = 0;
               Wave.IndexVertex[0] = Points.IndexPoints[v0];
               Wave.IndexVertex[1] = Points.IndexPoints[v1];
               Wave.IndexVertex[2] = Points.IndexPoints[v2];
               Wave.IndexVertex[3] = Points.IndexPoints[v3];
               Wave.IndexVertex[4] = 0;
               Wave.IndexVertex[5] = 0;
               // check the wave by the rules
               if(WaveRules(Wave)==true)
                 {
                  // if the wave passed the check by the rules, add it to the waves tree
                  ParentNode=Node.Add(NameWave,Wave);
                  I=1;
                  // create the first sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(i));
                  // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the second sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(i));
                  // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                  I++;
                  // create the third sub-wave in the waves tree
                  ChildNode=ParentNode.Add(IntegerToString(I));
                  // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                  if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                     FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                 }
               // otherwise, if the wave did not pass the check by the rules, release the memory
               else delete Wave;
              }
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
   // find no less than six points on the price chart and put them into the structure Points
   // if none were found, then exit the function
   if(FindPoints(6,IndexStart,IndexFinish,ValueStart,ValueFinish,Points)==false)return;
   // the loop of complete waves with the formula "1-2-3-4-5"
   v0 = 0;
   v1 = 1;
   v5 = Points.NumPoints - 1;
   while(v1<=v5-4)
     {
      v2=v1+1;
      while(v2<=v5-3)
        {
         v3=v2+1;
         while(v3<=v5-2)
           {
            v4=v3+1;
            while(v4<=v5-1)
              {
               int j=0;
               while(j<=i-1)
                 {
                  // get the name of the wave for analysis from ListNameWave
                  NameWave=ListNameWave[j++];
                  // find the index of the wave in the WaveDescription structure in order to know the number of its sub-waves and their names
                  IndexWave=FindWaveInWaveDescription(NameWave);
                  if(WaveDescription[IndexWave].NumWave==5)
                    {
                     // create the object of class TWave and fill its fields - parameters of the analyzed wave
                     Wave=new TWave;
                     Wave.Name=NameWave;
                     Wave.Level=Level;
                     Wave.Formula="1-2-3-4-5";
                     Wave.ValueVertex[0] = Points.ValuePoints[v0];
                     Wave.ValueVertex[1] = Points.ValuePoints[v1];
                     Wave.ValueVertex[2] = Points.ValuePoints[v2];
                     Wave.ValueVertex[3] = Points.ValuePoints[v3];
                     Wave.ValueVertex[4] = Points.ValuePoints[v4];
                     Wave.ValueVertex[5] = Points.ValuePoints[v5];
                     Wave.IndexVertex[0] = Points.IndexPoints[v0];
                     Wave.IndexVertex[1] = Points.IndexPoints[v1];
                     Wave.IndexVertex[2] = Points.IndexPoints[v2];
                     Wave.IndexVertex[3] = Points.IndexPoints[v3];
                     Wave.IndexVertex[4] = Points.IndexPoints[v4];
                     Wave.IndexVertex[5] = Points.IndexPoints[v5];
                     // check the wave by the rules
                     if(WaveRules(Wave)==true)
                       {
                        // if the wave passed the check by the rules, add it to the waves tree
                        ParentNode=Node.Add(NameWave,Wave);
                        I=1;
                        // create the first sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the first sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the second sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the second sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the third sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the third sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fourth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fourth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                        I++;
                        // create the fifth sub-wave in the waves tree
                        ChildNode=ParentNode.Add(IntegerToString(I));
                        // if the interval of the chart, corresponding to the fifth sub-wave, has not been analyzed, then analyze it
                        if(Already(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I])==false)
                           FinishedWaves(Wave,I,ChildNode,WaveDescription[IndexWave].Subwaves[I],Level+1);
                       }
                     // otherwise, if the wave did not pass the check by the rules, release the memory
                     else delete Wave;
                    }
                 }
               v4=v4+2;
              }
            v3=v3+2;
           }
         v2=v2+2;
        }
      v1=v1+2;
     }
  }

6.8. A função FindWaveInWaveDescription:

//+------------------------------------------------------------------+
//| The FindWaveInWaveDescription function                           |
//+------------------------------------------------------------------+
int FindWaveInWaveDescription(string NameWave)
  {
   for(int i=0;i<ArrayRange(WaveDescription,0);i++)
      if(WaveDescription[i].NameWave==NameWave)return(i);
   return(-1);
  }

6.9. A função Already:

//+------------------------------------------------------------------+
//| The Already function                                             |
//+------------------------------------------------------------------+
bool Already(TWave *Wave,int NumWave,TNode *Node,string Subwaves)
  {
   // obtain the necessary parameters of the wave or the group of waves
   int IndexStart=Wave.IndexVertex[NumWave-1];
   int IndexFinish=Wave.IndexVertex[NumWave];
   double ValueStart = Wave.ValueVertex[NumWave - 1];
   double ValueFinish= Wave.ValueVertex[NumWave];
   // in the loop, proceed the array NodeInfoArray for the search of the marked-up section of the chart
   for(int i=NodeInfoArray.Total()-1; i>=0;i--)
     {
      TNodeInfo *NodeInfo=NodeInfoArray.At(i);
      // if the required section has already been marked-up
      if(NodeInfo.Subwaves==Subwaves && (NodeInfo.ValueStart==ValueStart) && 
         (NodeInfo.ValueFinish==ValueFinish) && (NodeInfo.IndexStart==IndexStart) &&
         (NodeInfo.IndexFinish==IndexFinish))
        {
         // add the child nodes of the found node into the child nodes of the new node
         for(int j=0;j<NodeInfo.Node.Child.Total();j++)
            Node.Child.Add(NodeInfo.Node.Child.At(j));
         return(true); // exit the function
        }
     }
   // if the interval has not been marked-up earlier, then record its data into the array NodeInfoArray
   TNodeInfo *NodeInfo=new TNodeInfo;
   NodeInfo.IndexStart=IndexStart;
   NodeInfo.IndexFinish=IndexFinish;
   NodeInfo.ValueStart=ValueStart;
   NodeInfo.ValueFinish=ValueFinish;
   NodeInfo.Subwaves=Subwaves;
   NodeInfo.Node=Node;
   NodeInfoArray.Add(NodeInfo);
   return(false);
  }

6.10. A função WaveRules:

int IndexVertex[6];                         // the indexes of the tops of the wave
double ValueVertex[6],Maximum[6],Minimum[6]; // the balues of the tops of the wave, as well as the maximum and minimum values of the wave
string Trend;                                    // direction of the trend - "Up" or "Down"
string Formula;                                  // the formula of the wave - "1<2-3>" or "1-2-3>" etc.
int FixedVertex[6];                             // information about the tops of the wave, whether or not they have been fixed

//+------------------------------------------------------------------+
//| The function WaveRules                                                |
//+------------------------------------------------------------------+
bool WaveRules(TWave *Wave)
  {
   Formula=Wave.Formula;
   bool Result=false;
   // fill the array IndexVertex and ValueVertex - indexes of the tops and values of the tops of the wave
   for(int i=0;i<=5;i++)
     {
      IndexVertex[i]=Wave.IndexVertex[i];
      ValueVertex[i]=Wave.ValueVertex[i];
      FixedVertex[i]=-1;
     }
   // fill the array FixedVertex, the balues of which indicate whether or not the top of the wave is fixed
   int Pos1=StringFind(Formula,"<");
   string Str;
   if(Pos1>0)
     {
      Str=ShortToString(StringGetCharacter(Formula,Pos1-1));
      FixedVertex[StringToInteger(Str)]=1;
      FixedVertex[StringToInteger(Str)-1]=0;
      Pos1=StringToInteger(Str)+1;
     }
   else Pos1=0;
   int Pos2=StringFind(Formula,">");
   if(Pos2>0)
     {
      Str=ShortToString(StringGetCharacter(Formula,Pos2-1));
      FixedVertex[StringToInteger(Str)]=0;
      Pos2=StringToInteger(Str)-1;
     }
   else
     {
      Pos2=StringLen(Formula);
      Str=ShortToString(StringGetCharacter(Formula,Pos2-1));
      Pos2=StringToInteger(Str);
     }
   for(int i=Pos1;i<=Pos2;i++)
      FixedVertex[i]=1;
   double High[],Low[];
   ArrayResize(High,ArrayRange(rates,0));
   ArrayResize(Low,ArrayRange(rates,0));
     // find the maximums and minimums of the waves
     for(int i=1; i<=5; i++)
     {
      Maximum[i]=rates[IndexVertex[i]].high;
      Minimum[i]=rates[IndexVertex[i-1]].low;
      for(int j=IndexVertex[i-1];j<=IndexVertex[i];j++)
        {
         if(rates[j].high>Maximum[i])Maximum[i]=rates[j].high;
         if(rates[j].low<Minimum[i])Minimum[i]=rates[j].low;
        }
     }
   // find out the trend
   if((FixedVertex[0]==1 && ValueVertex[0]==rates[IndexVertex[0]].low) ||
      (FixedVertex[1]==1 && ValueVertex[1]==rates[IndexVertex[1]].high) ||
      (FixedVertex[2]==1 && ValueVertex[2]==rates[IndexVertex[2]].low) ||
      (FixedVertex[3]==1 && ValueVertex[3]==rates[IndexVertex[3]].high) ||
      (FixedVertex[4]==1 && ValueVertex[4]==rates[IndexVertex[4]].low) ||
      (FixedVertex[5]==1 && ValueVertex[5]==rates[IndexVertex[5]].high))
      Trend="Up";
   else Trend="Down";
   // check the required wave by the rules
   if(Wave.Name=="Impulse")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0 && VertexAAboveVertexB(4,1,true)>=0 &&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,true)>=0 &&
         (WaveAMoreWaveB(3,1)>=0 || WaveAMoreWaveB(3,5)>=0))
         Result=true;
     }
   else if(Wave.Name=="Leading Diagonal")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0 && VertexAAboveVertexB(4,2,true)>=0 &&
         VertexAAboveVertexB(1,4,false)>=0 &&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,true)>=0&&
         (WaveAMoreWaveB(3,1)>=0 || WaveAMoreWaveB(3,5)>=0))
         Result=true;
     }
   else if(Wave.Name=="Diagonal")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0 && VertexAAboveVertexB(4,2,true)>=0 &&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,true)>=0&&
         (WaveAMoreWaveB(3,1)>=0 || WaveAMoreWaveB(3,5)>=0))
         Result=true;
     }
   else if(Wave.Name=="Zigzag")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0)
         Result=true;
     }
   else if(Wave.Name=="Flat")
     {
      if(VertexAAboveVertexB(1,0,false)>=0 &&
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0)
         Result=true;
     }
   else if(Wave.Name=="Double Zigzag")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0)
         Result=true;
     }
   else if(Wave.Name=="Double Three")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,false)>=0)
         Result=true;
     }
   else if(Wave.Name=="Triple Zigzag")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && VertexAAboveVertexB(2,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,true)>=0 &&
         VertexAAboveVertexB(3,1,false)>=0 && VertexAAboveVertexB(5,3,false) &&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,true)>=0)
         Result=true;
     }
   else if(Wave.Name=="Triple Three")
     {
      if(VertexAAboveVertexB(1,0,true)>=0 && 
         VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,false)>=0 &&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,false)>=0)
         Result=true;
     }
   else if(Wave.Name=="Contracting Triangle")
     {
      if(VertexAAboveVertexB(1,0,false)>=0 && VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,false)>= 0&&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,false)>=0 &&
         WaveAMoreWaveB(2,3)>=0 && WaveAMoreWaveB(3,4)>=0 && WaveAMoreWaveB(4,5)>=0)
         Result=true;
     }
   else if(Wave.Name=="Expanding Triangle")
     {
      if(VertexAAboveVertexB(1,0,false)>=0 && VertexAAboveVertexB(1,2,false)>=0 && VertexAAboveVertexB(3,2,false)>= 0&&
         VertexAAboveVertexB(3,4,false)>=0 && VertexAAboveVertexB(5,4,false)>=0 &&
         WaveAMoreWaveB(3,2)>=0 && WaveAMoreWaveB(3,2)>=0)
         Result=true;
     }
   return(Result);
  }

6.11. A função VertexAAboveVertexB:

//+-------------------------------------------------------------------------------------+
//| The function VertexAAboveVertexB checks whether or not the top A is higher than top B,        |
//| transferred as the parameters of the given function                                   |
//| this check can be performed only if the tops A and B - are fixed,          |
//| or the top A - is not fixed and prime, while the top B - is fixed,             |
//| or the top A - is fixed, while the top B - is not fixed and odd,           |
//| or the top A - is not fixed and prime, and the top B - is not fixed and odd |
//+-------------------------------------------------------------------------------------+
int VertexAAboveVertexB(int A,int B,bool InternalPoints)
  {
   double VA=0,VB=0,VC=0;
   int IA=0,IB=0;
   int Result=0;
   if(A>=B)
     {
      IA = A;
      IB = B;
     }
   else if(A<B)
     {
      IA = B;
      IB = A;
     }
   // if the internal points of the wave must be taken into consideration
   if(InternalPoints==true)
     {
      if((Trend=="Up") && ((IA%2==0) || ((IA-IB==1) && (IB%2==0))))
        {
         VA=Minimum[IA];
         IA=IA-IA%2;
        }
      else if((Trend=="Down") && ((IA%2==0) || ((IA-IB==1) && (IB%2==0))))
        {
         VA=Maximum[IA];
         IA=IA-IA%2;
        }
      else if((Trend=="Up") && ((IA%2==1) || ((IA-IB==1) && (IB%2==1))))
        {
         VA=Maximum[IA];
         IA=IA -(1-IA%2);
        }
      else if((Trend=="Down") && (IA%2==1) || ((IA-IB==1) && (IB%2==1)))
        {
         VA=Minimum[IA];
         IA=IA -(1-IA%2);
        }
      VB=ValueVertex[IB];
     }
   else
     {
      VA = ValueVertex[IA];
      VB = ValueVertex[IB];
     }
   if(A>B)
     {
      A = IA;
      B = IB;
     }
   else if(A<B)
     {
      A = IB;
      B = IA;
      VC = VA;
      VA = VB;
      VB = VC;
     }
   if(((FixedVertex[A]==1) && (FixedVertex[B]==1)) || 
      ((FixedVertex[A] == 0) &&(A % 2 == 0) && (FixedVertex[B] == 1)) ||
      ((FixedVertex[A] == 1) && (FixedVertex[B] == 0) && (B %2 == 1)) ||
      ((FixedVertex[A] == 0) & (A %2 == 0) && (FixedVertex[B] == 0) && (B % 2== 1)))
     {
      if(((Trend=="Up") && (VA>=VB)) || ((Trend=="Down") && (VA<=VB)))
         Result=1;
      else
         Result=-1;
     }
   return(Result);
  }

6.12. A função WaveAMoreWaveB:

//+-----------------------------------------------------------------------+
//| The function WaveAMoreWaveB checks whether or not the wave A is larger than the wave B, |
//| transferred as the parameters of the given function                     |
//| this check can be performed only if wave A - is complete,    |
//| and wave B - is incomplete or incomplete and unbegun               |
//+-----------------------------------------------------------------------+
int WaveAMoreWaveB(int A,int B)
  {
   int Result=0;
   double LengthWaveA=0,LengthWaveB=0;
   if(FixedVertex[A]==1 && FixedVertex[A-1]==1 && (FixedVertex[B]==1 || FixedVertex[B-1]==1))
     {
      LengthWaveA=MathAbs(ValueVertex[A]-ValueVertex[A-1]);
      if(FixedVertex[B]==1 && FixedVertex[B-1]==1) LengthWaveB=MathAbs(ValueVertex[B]-ValueVertex[B-1]);
      else if(FixedVertex[B]==1 && FixedVertex[B-1]==0)
        {
         if(Trend=="Up") LengthWaveB=MathAbs(ValueVertex[B]-Minimum[B]);
         else LengthWaveB=MathAbs(ValueVertex[B]-Maximum[B]);
        }
      else if(FixedVertex[B]==0 && FixedVertex[B-1]==1)
        {
         if(Trend=="Up")LengthWaveB=MathAbs(ValueVertex[B-1]-Minimum[B-1]);
         else LengthWaveB=MathAbs(ValueVertex[B-1]-Maximum[B-1]);
        }
      if(LengthWaveA>LengthWaveB) Result=1;
      else Result=-1;
     }
   return(Result);
  }

6.13. A função ClearTree:

//+------------------------------------------------------------------+
//| The function of clearing the waves tree with the top node Node   |
//+------------------------------------------------------------------+
void ClearTree(TNode *Node)
  {
   if(CheckPointer(Node)!=POINTER_INVALID)
     {
      for(int i=0; i<Node.Child.Total();i++)
         ClearTree(Node.Child.At(i));
      delete Node.Child;
      if(CheckPointer(Node.Wave)!=POINTER_INVALID)delete Node.Wave;
      delete Node;
     }
  }

6.14. A função ClearNodeInfoArray:

//+------------------------------------------------------------------+
//| The function of clearing the NodeInfoArray array                 |
//+------------------------------------------------------------------+
void ClearNodeInfoArray()
  {
   for(int i=NodeInfoArray.Total()-1; i>=0;i--)
     {
      TNodeInfo *NodeInfo=NodeInfoArray.At(i);
      if(CheckPointer(NodeInfo.Node)!=POINTER_INVALID)delete NodeInfo.Node;
      delete NodeInfo;
     }
   NodeInfoArray.Clear();
  }

6.15. A função ClearZigzagArray:

//+------------------------------------------------------------------+
//| The function of clearing the ZigzagArray array                   |
//+------------------------------------------------------------------+
void ClearZigzagArray()
  {
   for(int i=0;i<ZigzagArray.Total();i++)
     {
      TZigzag *Zigzag=ZigzagArray.At(i);
      delete Zigzag.IndexVertex;
      delete Zigzag.ValueVertex;
      delete Zigzag;
     }
   ZigzagArray.Clear();
  }

6.16. A função FillLabelArray:

CArrayObj *LabelArray[];
int LevelMax=0;
//+------------------------------------------------------------------+
//| The FillLabelArray function                                      |
//+------------------------------------------------------------------+
void FillLabelArray(TNode *Node)
  {
   if(Node.Child.Total()>0)
     {
      // obtain the first node
      TNode *ChildNode=Node.Child.At(0);
      // obtain the structure, in which the information about the wave is stored
      TWave *Wave=ChildNode.Wave;
      string Text;
      // if there is a first top
      if(Wave.ValueVertex[1]>0)
        {
         // mark the top according to the wave
         if(Wave.Name=="Impulse" || Wave.Name=="Leading Diagonal" || Wave.Name=="Diagonal")
            Text="1";
         else if(Wave.Name=="Zigzag" || Wave.Name=="Flat" || Wave.Name=="Expanding Triangle" ||
                Wave.Name=="Contracting Triangle")
            Text="A";
         else if(Wave.Name=="Double Zigzag" || Wave.Name=="Double Three" || 
                Wave.Name=="Triple Zigzag" || Wave.Name=="Triple Three")
            Text="W";
         // obtain the array of the ArrayObj tops, which have the index Wave.IndexVertex[1] on the price chart 
         CArrayObj *ArrayObj=LabelArray[Wave.IndexVertex[1]];
         if(CheckPointer(ArrayObj)==POINTER_INVALID)
           {
            ArrayObj=new CArrayObj;
            LabelArray[Wave.IndexVertex[1]]=ArrayObj;
           }
         // put the information about the top with the index Wave.IndexVertex[1] into the array ArrayObj
         TLabel *Label=new TLabel;
         Label.Text=Text;
         Label.Level=Wave.Level;
         if(Wave.Level>LevelMax)LevelMax=Wave.Level;
         Label.Value=Wave.ValueVertex[1];
         ArrayObj.Add(Label);
        }
      if(Wave.ValueVertex[2]>0)
        {
         if(Wave.Name=="Impulse" || Wave.Name=="Leading Diagonal" || Wave.Name=="Diagonal")
            Text="2";
         else if(Wave.Name=="Zigzag" || Wave.Name=="Flat" || Wave.Name=="Expanding Triangle" ||
                Wave.Name=="Contracting Triangle")
            Text="B";
         else if(Wave.Name=="Double Zigzag" || Wave.Name=="Double Three" ||
                Wave.Name=="Triple Zigzag" || Wave.Name=="Triple Three")
            Text="X";
         CArrayObj *ArrayObj=LabelArray[Wave.IndexVertex[2]];
         if(CheckPointer(ArrayObj)==POINTER_INVALID)
           {
            ArrayObj=new CArrayObj;
            LabelArray[Wave.IndexVertex[2]]=ArrayObj;
           }
         TLabel *Label=new TLabel;
         Label.Text=Text;
         Label.Level=Wave.Level;
         if(Wave.Level>LevelMax)LevelMax=Wave.Level;
         Label.Value=Wave.ValueVertex[2];
         ArrayObj.Add(Label);
        }
      if(Wave.ValueVertex[3]>0)
        {
         if(Wave.Name=="Impulse" || Wave.Name=="Leading Diagonal" || Wave.Name=="Diagonal")
            Text="3";
         else if(Wave.Name=="Zigzag" || Wave.Name=="Flat" || 
                Wave.Name=="Expanding Triangle" || Wave.Name=="Contracting Triangle")
            Text="C";
         else if(Wave.Name=="Double Zigzag" || Wave.Name=="Double Three" ||
                Wave.Name=="Triple Zigzag" || Wave.Name=="Triple Three")
            Text="Y";
         CArrayObj *ArrayObj=LabelArray[Wave.IndexVertex[3]];
         if(CheckPointer(ArrayObj)==POINTER_INVALID)
           {
            ArrayObj=new CArrayObj;
            LabelArray[Wave.IndexVertex[3]]=ArrayObj;
           }
         TLabel *Label=new TLabel;
         Label.Text=Text;
         Label.Level=Wave.Level;
         if(Wave.Level>LevelMax)LevelMax=Wave.Level;
         Label.Value=Wave.ValueVertex[3];
         ArrayObj.Add(Label);
        }
      if(Wave.ValueVertex[4]>0)
        {
         if(Wave.Name=="Impulse" || Wave.Name=="Leading Diagonal" || Wave.Name=="Diagonal")
            Text="4";
         else if(Wave.Name=="Expanding Triangle" || Wave.Name=="Contracting Triangle")
            Text="D";
         else if(Wave.Name=="Triple zigzag" || Wave.Name=="Triple Three")
            Text="XX";
         CArrayObj *ArrayObj=LabelArray[Wave.IndexVertex[4]];
         if(CheckPointer(ArrayObj)==POINTER_INVALID)
           {
            ArrayObj=new CArrayObj;
            LabelArray[Wave.IndexVertex[4]]=ArrayObj;
           }
         TLabel *Label=new TLabel;
         Label.Text=Text;
         Label.Level=Wave.Level;
         if(Wave.Level>LevelMax)LevelMax=Wave.Level;
         Label.Value=Wave.ValueVertex[4];
         ArrayObj.Add(Label);
        }
      if(Wave.ValueVertex[5]>0)
        {
         if(Wave.Name=="Impulse" || Wave.Name=="Leading Diagonal" || Wave.Name=="Diagonal")
            Text="5";
         else if(Wave.Name=="Expanding Triangle" || Wave.Name=="Contracting Triangle")
            Text="E";
         else if(Wave.Name=="Triple Zigzag" || Wave.Name=="Triple Three")
            Text="Z";
         CArrayObj *ArrayObj=LabelArray[Wave.IndexVertex[5]];
         if(CheckPointer(ArrayObj)==POINTER_INVALID)
           {
            ArrayObj=new CArrayObj;
            LabelArray[Wave.IndexVertex[5]]=ArrayObj;
           }
         TLabel *Label=new TLabel;
         Label.Text=Text;
         Label.Level=Wave.Level;
         if(Wave.Level>LevelMax)LevelMax=Wave.Level;
         Label.Value=Wave.ValueVertex[5];
         ArrayObj.Add(Label);
        }
      // proceed the child nodes of the current node
      for(int j=0;j<ChildNode.Child.Total();j++)
         FillLabelArray(ChildNode.Child.At(j));
     }
  }

6.17. A função CreateLabels:

double PriceInPixels;
CArrayObj ObjTextArray; // declare the array, which will store the graphical objects of "Text" type
//+------------------------------------------------------------------+
//| The function CreateLabels                                        |
//+------------------------------------------------------------------+
void CreateLabels()
  {
   double PriceMax =ChartGetDouble(0,CHART_PRICE_MAX,0);
   double PriceMin = ChartGetDouble(0,CHART_PRICE_MIN);
   int WindowHeight=ChartGetInteger(0,CHART_HEIGHT_IN_PIXELS);
   PriceInPixels=(PriceMax-PriceMin)/WindowHeight;
   int n=0;
   // loop the LabelArray array 
   for(int i=0;i<ArrayRange(LabelArray,0);i++)
     {
      // if there are tops with the same index i
      if(CheckPointer(LabelArray[i])!=POINTER_INVALID)
        {
         // obtain the tops with the same indexes i
         CArrayObj *ArrayObj=LabelArray[i];
         // loop the tops and display them on the chart
         for(int j=ArrayObj.Total()-1;j>=0;j--)
           {
            TLabel *Label=ArrayObj.At(j);
            int Level=LevelMax-Label.Level;
            string Text=Label.Text;
            double Value=Label.Value;
            color Color;
            int Size=8;
            if((Level/3)%2==0)
              {
               if(Text=="1") Text="i";
               else if(Text == "2") Text = "ii";
               else if(Text == "3") Text = "iii";
               else if(Text == "4") Text = "iv";
               else if(Text == "5") Text = "v";
               else if(Text == "A") Text = "a";
               else if(Text == "B") Text = "b";
               else if(Text == "C") Text = "c";
               else if(Text == "D") Text = "d";
               else if(Text == "E") Text = "e";
               else if(Text == "W") Text = "w";
               else if(Text=="X") Text="x";
               else if(Text == "XX") Text = "xx";
               else if(Text == "Y") Text = "y";
               else if(Text == "Z") Text = "z";
              }
            if(Level%3==2)
              {
               Color=Green;
               Text="["+Text+"]";
              }
            if(Level%3==1)
              {
               Color=Blue;
               Text="("+Text+")";
              }
            if(Level%3==0)
               Color=Red;
            int Anchor;
            if(Value==rates[i].high)
              {
               for(int k=ArrayObj.Total()-j-1;k>=0;k--)
                  Value=Value+15*PriceInPixels;
               Anchor=ANCHOR_UPPER;
              }
            else if(Value==rates[i].low)
              {
               for(int k=ArrayObj.Total()-j-1;k>=0;k--)
                  Value=Value-15*PriceInPixels;
               Anchor=ANCHOR_LOWER;
              }
            CChartObjectText *ObjText=new CChartObjectText;
            ObjText.Create(0,"wave"+IntegerToString(n),0,rates[i].time,Value);
            ObjText.Description(Text);
            ObjText.Color(Color);
            ObjText.SetInteger(OBJPROP_ANCHOR,Anchor);
            ObjText.FontSize(8);
            ObjText.Selectable(true);
            ObjTextArray.Add(ObjText);
            n++;
           }
        }
     }
   ChartRedraw();
  }

6.18. A função CorrectLabel:

//+------------------------------------------------------------------+
//| The CorrectLabel function                                        |
//+------------------------------------------------------------------+
void CorrectLabel()
  {
   double PriceMax=ChartGetDouble(0,CHART_PRICE_MAX,0);
   double PriceMin = ChartGetDouble(0,CHART_PRICE_MIN);
   int WindowHeight=ChartGetInteger(0,CHART_HEIGHT_IN_PIXELS);
   double CurrentPriceInPixels=(PriceMax-PriceMin)/WindowHeight;
   // loop all of the text objects (wave tops) and change their price size
   for(int i=0;i<ObjTextArray.Total();i++)
     {
      CChartObjectText *ObjText=ObjTextArray.At(i);
      double PriceValue=ObjText.Price(0);
      datetime PriceTime=ObjText.Time(0);
      int j;
      for(j=0;j<ArrayRange(rates,0);j++)
        {
         if(rates[j].time==PriceTime)
            break;
        }
      double OffsetInPixels;
      if(rates[j].low>=PriceValue)
        {
         OffsetInPixels=(rates[j].low-PriceValue)/PriceInPixels;
         ObjText.Price(0,rates[j].low-OffsetInPixels*CurrentPriceInPixels);
        }
      else if(rates[j].high<=PriceValue)
        {
         OffsetInPixels=(PriceValue-rates[j].high)/PriceInPixels;
         ObjText.Price(0,rates[j].high+OffsetInPixels*CurrentPriceInPixels);
        }
     }
   PriceInPixels=CurrentPriceInPixels;
  }


7. A função de inicialização, de provisionamento e processamento de eventos

Na função OnInit, os botões de controle do analisador das Ondas de Elliott automático são criados.

Os seguintes botões são criados:

  1. "Começar Análise" - uma análise automática das ondas ocorre
  2. "Mostrar resultados" - a exibição das marcas de onda no gráfico ocorre,
  3. "Limpar gráfico" - uma limpeza da memória e a exclusão das marcas de onda a partir do gráfico ocorre,
  4. "Corrigir as marcas" - corrige as marcas das ondas no gráfico.

O processamento de pressionamento desses botões tem lugar na função de processamento de eventos OnChartEvent.

Na função OnDeinit, todos os objetos gráficos são removidos a partir do gráfico, incluindo os botões de controle.

#include <Object.mqh>
#include <Arrays\List.mqh>
#include <Arrays\ArrayObj.mqh>
#include <Arrays\ArrayInt.mqh>
#include <Arrays\ArrayDouble.mqh>
#include <Arrays\ArrayString.mqh>
#include <ChartObjects\ChartObjectsTxtControls.mqh>
#include <Elliott wave\Data structures.mqh>
#include <Elliott wave\Analysis functions.mqh>
#include <Elliott wave\Rules functions.mqh>
CChartObjectButton *ButtonStart,*ButtonShow,*ButtonClear,*ButtonCorrect;
int State;
//+------------------------------------------------------------------+
//| Expert initialization function                                   |
//+------------------------------------------------------------------+
int OnInit()
  {
   State=0;
   // create control buttons
   ButtonStart=new CChartObjectButton;
   ButtonStart.Create(0,"Begin analysis",0,0,0,150,20);
   ButtonStart.Description("Begin analysis");
   ButtonShow=new CChartObjectButton;
   ButtonShow.Create(0,"Show results",0,150,0,150,20);
   ButtonShow.Description("Show results");
   ButtonClear=new CChartObjectButton;
   ButtonClear.Create(0,"Clear chart",0,300,0,150,20);
   ButtonClear.Description("Clear chart");
   ButtonCorrect=new CChartObjectButton;
   ButtonCorrect.Create(0,"Correct the marks",0,450,0,150,20);
   ButtonCorrect.Description("Correct the marks");
   ChartRedraw();
   return(0);
  }
//+------------------------------------------------------------------+
//| Expert deinitialization function                                 |
//+------------------------------------------------------------------+
void OnDeinit(const int reason)
  {
   //clear waves tree
   ClearTree(FirstNode);
   //clear NodeInfoArray
   ClearNodeInfoArray();
   //clear ZigzagArray
   ClearZigzagArray();
   //clear LabelArray
   for(int i=0;i<ArrayRange(LabelArray,0);i++)
     {
      CArrayObj *ArrayObj=LabelArray[i];
      if(CheckPointer(ArrayObj)!=POINTER_INVALID)
        {
         for(int j=0;j<ArrayObj.Total();j++)
           {
            TLabel *Label=ArrayObj.At(j);
            delete Label;
           }
         ArrayObj.Clear();
         delete ArrayObj;
        }
     }
   //delete all of the graphical elements from the chart
   for(int i=ObjTextArray.Total()-1;i>=0;i--)
     {
      CChartObjectText *ObjText=ObjTextArray.At(i);
      delete ObjText;
     }
   ObjTextArray.Clear();
   delete ButtonStart;
   delete ButtonShow;
   delete ButtonClear;
   delete ButtonCorrect;
   ChartRedraw();
  }
MqlRates rates[];
TNode *FirstNode;
//+------------------------------------------------------------------+
//| ChartEvent function                                              |
//+------------------------------------------------------------------+
void OnChartEvent(const int id,
                  const long &lparam,
                  const double &dparam,
                  const string &sparam)
  {
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Begin analysis" && State!=0)
      MessageBox("First press the button \"Clear char\"");
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Show results" && State!=1)
      MessageBox("First press the button \"Begin analysis\"");
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Clear chart" && State!=2)
      MessageBox("First press the button \"Show results\"");
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Correct the mark" && State!=2)
      MessageBox("First press the button \"Show results\"");
   //if the "Begin analysis" is pressed
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Begin analysis" && State==0)
     {
      //fill the rates array
      CopyRates(NULL,0,0,Bars(_Symbol,_Period),rates);
      //fill the array ZigzagArray
      FillZigzagArray(0,Bars(_Symbol,_Period)-1);
      //create the first node
      TWave *Wave=new TWave;
      Wave.IndexVertex[0] = 0;
      Wave.IndexVertex[1] = Bars(_Symbol,_Period)-1;
      Wave.ValueVertex[0] = 0;
      Wave.ValueVertex[1] = 0;
      FirstNode=new TNode;
      FirstNode.Child=new CArrayObj;
      FirstNode.Wave=Wave;
      FirstNode.Text="First node";
      string NameWaves="Impulse,Leading Diagonal,Diagonal,Zigzag,Flat,Double Zigzag,Triple Zigzag,
                          Double Three,Triple Three,Contracting Triangle,Expanding triangle";
      //call the search for unbegun and incomplete waves function
      NotStartedAndNotFinishedWaves(Wave,1,FirstNode,NameWaves,0);
      MessageBox("Analysis is complete");
      State=1;
      ButtonStart.State(false);
      ChartRedraw();
     }
   // if "Show results" is pressed
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Show results" && State==1)
     {
      ArrayResize(LabelArray,ArrayRange(rates,0));

      //fill the LabelArray array
      FillLabelArray(FirstNode);
      //show the mark-up of the waves on the chart
      CreateLabels();
      State=2;
      ButtonShow.State(false);
      ChartRedraw();
     }
   //if "Clear chart" is pressed"  
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Clear chart" && State==2)
     {
      //clear the waves tree
      ClearTree(FirstNode);
      //clear the NodeInfoArray array
      ClearNodeInfoArray();
      //clear the ZigzagArray array
      ClearZigzagArray();
      //clear LabelArray
      for(int i=0;i<ArrayRange(LabelArray,0);i++)
        {
         CArrayObj *ArrayObj=LabelArray[i];
         if(CheckPointer(ArrayObj)!=POINTER_INVALID)
           {
            for(int j=0;j<ArrayObj.Total();j++)
              {
               TLabel *Label=ArrayObj.At(j);
               delete Label;
              }
            ArrayObj.Clear();
            delete ArrayObj;
           }
        }
      // delete mark-up from the chart
      for(int i=ObjTextArray.Total()-1;i>=0;i--)
        {
         CChartObjectText *ObjText=ObjTextArray.At(i);
         ObjText.Delete();
        }
      ObjTextArray.Clear();
      State=0;
      ButtonClear.State(false);
      ChartRedraw();
     }
   if(id==CHARTEVENT_OBJECT_CLICK && sparam=="Correct the marks" && State==2)
     {
      CorrectLabel();
      ButtonCorrect.State(false);
      ChartRedraw();
     }
  }

Revimos todas as funções do analisador automático das Ondas de Elliott.

8. Formas de melhorar o programa

O mark-up automático do programa de Ondas Elliott, escrito em MQL5, tem várias deficiências:

  1. Um sistema imperfeito para verificar as regras de marcação. Por exemplo, ao verificar as regras, as relações de Fibonacci entre as ondas não são levadas em conta, de acordo com ambos, tempo e preço.
  2. A presença de seções não particionadas no gráfico (falhas na marcação). Isto significa que uma onda correta não pode ser construída com base nos pontos tomados a partir do intervalo de tempo determinado. A saída desta situação é aumentar o número de pontos a fim de identificar uma onda particular. Por exemplo, para encontrar o impulso, procure por 8 ou mais pontos, ao invés de 6 pontos.
  3. Os resultados da marcação não exibem qualquer informação adicional, por exemplo, os canais não são construídos automaticamente, as metas não são avaliadas, etc
  4. A implementação do trabalho com a árvore de ondas não é fornecida neste artigo (você não pode selecionar uma versão específica do markup), para isso, o gráfico mostra apenas uma das muitas opções para um markup (a primeira versão do markup).
  5. Independentemente do fato de que o gráfico mostre uma única variante das ondas, todas as outras opções são armazenadas na memória e ocupam seu espaço.
  6. O programa foca no mark-up de gráficos Mensais para Diários, como a operação é muito lenta, quando há um grande número de barras (pode levar horas para fazer um mark-up em um gráfico de hora em hora). Um exemplo de um mark-up de um gráfico mensal de EURUSD é mostrado na Figura 18.

Figura 18. As Ondas de Elliott, identificadas pelo analisador automático em MQL5
Figura 18. As Ondas de Elliott, identificadas pelo analisador automático em MQL5

Conclusão

Este artigo analisou um algoritmo de análise automática das Ondas de Elliott. Este algoritmo foi implementado na linguagem MQL5.

O programa tem uma série de deficiências, discutidas acima, e dá razão para sua posterior eliminação. Espero que esta questão interesse aos fãs das Ondas de Elliott e, em breve, apareçam muitos programas com a análise automática das ondas.


Traduzido do russo pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/ru/articles/260

Arquivos anexados |
elliott_wave_en.zip (150.91 KB)
Últimos Comentários | Ir para discussão (3)
David Gadelha
David Gadelha | 21 ago 2016 em 18:35

Couldn't make it work.... many errors at compiling time:

 

Any idea?

Thanx 

Livio Alves
Livio Alves | 26 mar 2018 em 18:47
David Gadelha:

Couldn't make it work.... many errors at compiling time:

 

Any idea?

Thanx 


Change the line 67 of file \MQL5\Include\Elliott wave\Data structures.mqh to class TNodeInfo: public CObject

UllyssesSC
UllyssesSC | 28 nov 2018 em 20:15
Apliquei ao gráfico porém não funciona
Usar WinInet em MQL5.  Parte 2:  Solicitações POST e Arquivos Usar WinInet em MQL5. Parte 2: Solicitações POST e Arquivos
Neste artigo, continuaremos a estudar os princípios de funcionamento com a Internet usando requisições HTTP e troca de informações com o servidor. Ele descreve as novas funções da classe CMqlNet, métodos de envio de informação de formulários e envio de arquivos usando requisições POST, bem como a autorização em websites sob seu login, usando Cookies.
Diminuindo o Consumo de Memória pelos Indicadores Auxiliares Diminuindo o Consumo de Memória pelos Indicadores Auxiliares
Se um indicador usa valores de muitos outros indicadores para seus cálculos, ele consome muita memória. O artigo descreve diversos métodos para diminuir o consumo de memória quando estiver usando indicadores auxiliares. A memória salva permite o aumento de pares de moedas, indicadores e estratégias usados simultaneamente no terminal cliente. Ele aumenta a confiabilidade do portfólio comercial. Esse cuidado simples sobre os recursos técnicos do seu computador pode se transformar em recursos monetários em seu depósito.
Aplicação da transformada de Fisher e da transformada inversa de Fisher à análise de mercado no MetaTrader 5 Aplicação da transformada de Fisher e da transformada inversa de Fisher à análise de mercado no MetaTrader 5
Sabemos que a função de densidade de probabilidade (PDF) de um ciclo de mercado não se parece com uma curva de Gauss e sim com uma PDF de onda senoidal e que a maioria dos indicadores supõe que a PDF de ciclo de mercado seja uma curva de Gauss, precisamos encontrar uma maneira de "corrigir" isso. A solução é utilizar a transformada de Fisher. A transformada de Fisher faz com que a PDF de qualquer forma de onde se aproxime a uma onda de Gauss. Este artigo descreve a matemática por trás da transformada de Fisher e da transformada inversa de Fisher e sua aplicação a negociação. Um módulo de sinal de negócio proprietário com base na transformada inversa de Fisher é apresentada e avaliada.
Crie Seu Próprio Expert Advisor no MQL5 Wizard Crie Seu Próprio Expert Advisor no MQL5 Wizard
O conhecimento das linguagens de programação não é mais um pré-requisito para a criação de robôs de negociação. Anteriormente, a falta de habilidades de programação era um obstáculo intransponível para a implementação de estratégias de negociação próprias, mas com o surgimento do MQL5 Wizard, a situação mudou radicalmente. Os comerciantes inexperientes podem parar de se preocupar por causa da falta de experiência em programação - com o novo Wizard, que permite gerar código do Expert Advisor, isso não é necessário.