パブリッシュされた記事"ニュース取引が簡単に(第6回):取引の実施(III)".

この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。

この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。

本稿はMQL4言語関数の簡単なガイドです。MQL4からMQL5へプログラムを移植するのに役立つことでしょう。MQL4関数(トレーディング関数以外)にはそれぞれ記述とMQL5実装が存在します。そのため移行時間が大幅に削減されます。利便性を考え、MQL4関数はグループ分けされておりMQL4参照に似た形になっています。

MetaTraderのマーケットからトレードロボットを購入し、インストールする方法
メタトレーダーのプロダクトは、mql5.com のウェブサイト上またはMetaTrader4,MetaTrader5から直接買うことができます。 希望のお支払い方法を選択して、トレーディングスタイルに合ったプロダクトをお選びいただき、アクティベートしてください。

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。

今日は私たちと一緒にUSDJPYペアを中心とした取引戦略の構築に挑戦するしましょう。日足のローソク足パターンは、潜在的により強い動きがあるため、日足パターンで形成されるローソク足パターンを取引します。私たちの当初の戦略は利益を生み、これにより獲得した資本を保護するために、戦略を継続的に改良し、安全性をさらに高める努力を続けることができました。

市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。

この記事では、MQL5における複数のアンサンブル学習手法の実装を紹介し、それらの手法がさまざまな状況下でどの程度有効かを検証します。

MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。

強化型トレンド確認手法は、プライスアクション、出来高分析、そして機械学習を組み合わせることで、真の市場動向を見極めることを目的としています。この手法では、取引を検証するために、価格のブレイクアウトと平均比50%以上の出来高急増という2つの条件を満たす必要があります。さらに、追加の確認手段としてLSTMニューラルネットワークを活用します。システムはATR (Average True Range)に基づいたポジションサイズ設定と動的リスク管理を採用しており、誤ったシグナルを排除しつつ、多様な市場環境に柔軟に対応できる設計となっています。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。

知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator
Awesome Oscillatorは、モメンタム(勢い)を測定するために使用されるビル・ウィリアムズのインジケーターの一つです。複数のシグナルを生成できるため、以前の記事と同様に、MQL5ウィザードクラスとアセンブリを活用して、パターンベースでこれらを確認します。

知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター
ビル・ウィリアムズが考案したアリゲーターインジケーターは、明確なシグナルを生成し、他のインジケーターと組み合わせて使用されることが多い、多機能なトレンド識別インジケーターです。MQL5ウィザードのクラスとアセンブリを活用することで、パターンベースでさまざまなシグナルをテストできるため、このインジケーターも検討対象となります。

チャート上に表示された分析済みのメトリックを見るだけにとどまらず、Telegramとの統合によってブロードキャストを拡張するという、より広い視点へと移行しています。この機能強化により、Telegramアプリを通じて、重要な結果がモバイルデバイスに直接配信されるようになります。この記事では、この新たな取り組みを一緒に探っていきましょう。

連載第3回へようこそ。今回は、日足のトレンドに沿った最適なエントリーポイントを特定する戦略として、ダイバージェンスの活用について詳しく解説します。また、トレーリングストップロスに似た、しかし独自の機能を備えたカスタム利益ロック機構もご紹介します。さらに、Trend Constraint EAを高度化し、既存の取引条件を補完する形で新たなエントリー条件を追加します。今後も、MQL5を活用したアルゴリズム開発の実践的な応用方法を深掘りし、実際に使えるテクニックや洞察を継続的にお届けしていきます。

詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。

この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。

数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。

この記事では、ダッシュボードの制御を改善するために、通貨ペアフィルター、重要度レベル、時間フィルター、キャンセルオプションのボタンを作成します。これらのボタンは、ユーザーのアクションに動的に応答するようにプログラムされており、シームレスな操作を可能にします。また、ダッシュボードにリアルタイムの変更を反映するために、ユーザーの行動を自動化します。これにより、パネルの全体的な機能性、モビリティ、応答性が向上します。

CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。

今回は、MQL5と強力なデータ処理ツールを統合する高度なテクニックに焦点を当て、取引分析および意思決定を強化するためのビッグデータの効率的な活用方法を探ります。