Andrey Dik
Andrey Dik
  • 情報
12+ 年
経験
5
製品
87
デモバージョン
15
ジョブ
0
シグナル
0
購読者
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
パブリッシュされた記事算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。

Andrey Dik
パブリッシュされた記事原子軌道探索(AOS)アルゴリズム:改良版
原子軌道探索(AOS)アルゴリズム:改良版

第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。

Andrey Dik
パブリッシュされた記事原子軌道探索(AOS)アルゴリズム
原子軌道探索(AOS)アルゴリズム

この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。

Andrey Dik
パブリッシュされた記事ALGLIBライブラリの最適化手法(第2回):
ALGLIBライブラリの最適化手法(第2回):

この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。

Andrey Dik
パブリッシュされた記事ALGLIBライブラリの最適化手法(第1回):
ALGLIBライブラリの最適化手法(第1回):

この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。

Andrey Dik
パブリッシュされた記事人工生態系ベースの最適化(AEO)アルゴリズム
人工生態系ベースの最適化(AEO)アルゴリズム

この記事では、初期の解候補集団を生成し、適応的な更新戦略を適用することで、生態系構成要素間の相互作用を模倣するメタヒューリスティック手法、人工エコシステムベース最適化(AEO: Artificial Ecosystem-based Optimization)アルゴリズムについて検討します。AEOの動作過程として、消費フェーズや分解フェーズ、さらに多様なエージェント行動戦略など、各段階を詳細に説明します。あわせて、本アルゴリズムの特徴と利点についても紹介します。

Andrey Dik
パブリッシュされた記事アフリカ水牛最適化(ABO)
アフリカ水牛最適化(ABO)

この記事では、アフリカ水牛の特異な行動に着想を得て2015年に開発されたメタヒューリスティック手法、アフリカ水牛最適化(ABO)アルゴリズムを紹介します。アルゴリズムの実装プロセスと、複雑な問題の解決におけるその高い効率性について詳しく解説しており、最適化分野における有用なツールであることが示されています。

Andrey Dik
パブリッシュされた記事人工散布アルゴリズム(ASHA)
人工散布アルゴリズム(ASHA)

この記事では、一般的な最適化問題を解決するために開発された新しいメタヒューリスティック手法、人工散布アルゴリズム(ASHA: Artificial Showering Algorithm)を紹介します。ASHAは、水の流れと蓄積のプロセスをシミュレーションすることで、各リソース単位(水)が最適解を探索する「理想フィールド」という概念を構築します。本稿では、ASHAがフローと蓄積の原理をどのように適応させ、探索空間内でリソースを効率的に割り当てるかを解説し、その実装およびテスト結果を紹介します。

Andrey Dik
Andrey Dik
Группа для общения по вопросам оптимизации: https://t.me/+vazsAAcney4zYmZi
Andrey Dik
パブリッシュされた記事雲モデル最適化(ACMO):実践編
雲モデル最適化(ACMO):実践編

この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。

Andrey Dik
パブリッシュされた記事雲モデル最適化(ACMO):理論
雲モデル最適化(ACMO):理論

この記事は、最適化問題を解決するために雲の挙動をシミュレートするメタヒューリスティックな雲モデル最適化(ACMO: Atmosphere Clouds Model Optimization)アルゴリズムについて解説します。このアルゴリズムは、雲の生成、移動、拡散といった自然現象の原理を用いて、解空間内の「気象条件」に適応します。この記事では、ACMOの気象的なシミュレーションが、複雑な可能性空間の中でどのようにして最適解を導き出すかを明らかにし、「空」の準備、雲の生成、雲の移動、そして雨の集約といった各ステップを詳しく説明します。

Andrey Dik
MT5 Optimization Booster Trading News The results of MLP neural network optimization in the standard MT5 optimizer using MT5 Optimization Booster . The booster perfectly identifies promising areas of search and focuses its attention on these areas...
Andrey Dik
Andrey Dik
An example of training a neural network using the MT5 Optimization Booster product. The nature of the balance curve on the OOS corresponds to the nature of the curve in the training area.
Andrey Dik
パブリッシュされた記事アーチェリーアルゴリズム(AA)
アーチェリーアルゴリズム(AA)

この記事では、アーチェリーに着想を得た最適化アルゴリズムについて詳しく検討し、有望な「矢」の着地点を選定するメカニズムとしてルーレット法の活用に焦点を当てます。この手法により、解の質を評価し、さらなる探索に最も有望な位置を選び出すことが可能になります。

Andrey Dik
MT5 Optimization Booster Product Guide The product is designed to enhance the functionality of the standard tester...
Andrey Dik
パブリッシュされた記事細菌走化性最適化(BCO)
細菌走化性最適化(BCO)

この記事では、細菌走化性最適化(BCO)アルゴリズムのオリジナルバージョンとその改良版を紹介します。新バージョン「BCOm」では、細菌の移動メカニズムを簡素化し、位置履歴への依78ytf存を軽減するとともに、計算負荷の大きかった元のバージョンに比べて、より単純な数学的手法を採用しています。この記事では両者の違いを詳しく検討し、とくにBCOmの特徴に焦点を当てます。また、テストを実施し、その結果をまとめます。

Andrey Dik
Dear traders and investors! We present to you the MT5 Optimization Booster – an innovative product that will revolutionize your optimization experience on MetaTrader 5! The MT5 Optimization Booster is designed to enhance the capabilities of the standard optimizer...
Andrey Dik
Уважаемые трейдеры и инвесторы! Представляем вам MT5 Optimization Booster – инновационный продукт, который перевернет ваши представления об оптимизации на MetaTrader 5! MT5 Optimization Booster предназначен для расширения возможностей штатного оптимизатора...
Andrey Dik
パブリッシュされた記事タブーサーチ(TS)
タブーサーチ(TS)

この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。

Andrey Dik
パブリッシュされた記事人工藻類アルゴリズム(AAA)
人工藻類アルゴリズム(AAA)

本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。