Andrey Dik
Andrey Dik
  • 情報
12+ 年
経験
5
製品
87
デモバージョン
15
ジョブ
0
シグナル
0
購読者
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
パブリッシュされた記事最適化アルゴリズムの効率における乱数生成器の品質の役割
最適化アルゴリズムの効率における乱数生成器の品質の役割

この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)

(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。

Andrey Dik
パブリッシュされた記事母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:極値から抜け出す力(第II部)
母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。

Andrey Dik
AO Core Чтобы обеспечить самооптимизацию советника для реализации любых требуемых возможностей и функциональностей, используется схема, представленная на рисунке 1. На временной шкале "История" советник позиционируется в точке "время сейчас", где принимается решение об оптимизации...
Andrey Dik
AO Core To ensure self-optimization of the advisor for implementing any required capabilities and functionalities, the scheme presented in Figure 1 is employed. On the "History" timeline, the advisor is positioned at the "time now" point where the optimization decision is made...
Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:極値から抜け出す力(第I部)
母集団最適化アルゴリズム:極値から抜け出す力(第I部)

本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。

Andrey Dik
パブリッシュされた記事効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。

Andrey Dik
パブリッシュされた記事最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する
最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する

この記事では、最適化アルゴリズムを使用して最適なEAパラメータをオンザフライで見つけることや、取引操作とEAロジックの仮想化について、実践的な側面から論じています。この記事は、最適化アルゴリズムをEAに実装するためのインストラクションとして使用できます。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:社会集団の進化(ESG)
母集団最適化アルゴリズム:社会集団の進化(ESG)

多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)

この記事では、自然界の生物の遺伝物質で起こる自然なプロセスをモデル化した2進数遺伝的アルゴリズム(binary genetic algorithm:BGA)を見ていきます。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)

この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)

この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)
母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。

Andrey Dik
パブリッシュされた記事母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法

この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。