Andrey Dik / プロファイル
- 情報
|
12+ 年
経験
|
5
製品
|
87
デモバージョン
|
|
15
ジョブ
|
0
シグナル
|
0
購読者
|
A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
All my publications: https://www.mql5.com/en/users/joo/publications
I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.
I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller
Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
この記事では、これまでに取り上げたアルゴリズムの中で最も議論の的となっているアルゴリズム、差分進化(DE)アルゴリズムについて考察します。
本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
この記事では、無生物由来の興味深いアルゴリズム、つまり川床形成プロセスをシミュレーションするIntelligent Water Drops (IWD)について考察しています。このアルゴリズムのアイデアにより、従来の格付けのリーダーであったSDSを大幅に改善することが可能になりました。いつものように、新しいリーダー(修正SDSm)は添付ファイルにあります。
この記事では、無生物の自然にヒントを得た別の最適化アルゴリズムである荷電系探索(CSS)アルゴリズムについて検討します。この記事の目的は、物理学と力学の原理に基づいた新しい最適化アルゴリズムを提示することです。
この記事では、ランダムウォークの原理に基づく非常に強力で効率的な最適化アルゴリズムである確SDS(Stochastic Diffusion Search、確率的拡散探索)について説明します。このアルゴリズムは、複雑な多次元空間で最適解を求めることができ、収束速度が速く、局所極値を避けることができるのが特徴です。
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。
本稿では、Shuffled Frog-Leaping (SFL)アルゴリズムの詳細な説明と、最適化問題を解く上でのその能力を紹介します。SFLアルゴリズムは、自然環境におけるカエルの行動から着想を得ており、関数最適化への新しいアプローチを提供します。SFLアルゴリズムは、効率的で柔軟なツールであり、様々な種類のデータを処理し、最適解を得ることができます。
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。
今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。
The product has been updated to version 1.6 (including for MT5), in which the already incredible search capabilities have become even cooler! Owners of purchased licenses for AO Core can always be sure that they have the best solution search thanks to the author's constant research in the field of optimization. Follow my news and read my articles, I wish you all success in all your endeavors!
1. Increased the speed of the library.
2. The scheme of checking for duplicates has been improved.
https://www.mql5.com/ru/market/product/92455
大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。
https://www.mql5.com/ru/market/product/92455
雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。
AO Core is the core of the optimization algorithm, it is a library built on the author's HMA (hybrid metaheuristic algorithm) algorithm. Pay attention to the MT5 Optimization Booster product , which makes it very easy to manage the regular MT5 optimizer . An example of using AO Core is described in the article: https://www.mql5.com/ru/articles/14183 https://www.mql5.com/en/blogs/post/756510 This hybrid algorithm is based on a genetic algorithm and contains the best qualities and properties of
