Andrey Dik / 프로필
- 정보
11+ 년도
경험
|
2
제품
|
210
데몬 버전
|
14
작업
|
0
거래 신호
|
0
구독자
|
A group for communication on optimization issues: https://t.me/+vazsAAcney4zYmZi
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
All my publications: https://www.mql5.com/en/users/joo/publications
I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.
I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller
Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
В данной статье мы представляем алгоритм арифметической оптимизации (Arithmetic Optimization Algorithm, AOA), который основывается на простых арифметических операциях: сложении, вычитании, умножении и делении. Эти базовые математические действия служат основой для поиска оптимальных решений в различных задачах.
Во второй части статьи мы продолжим разработку модифицированной версии алгоритма AOS (Atomic Orbital Search), сфокусировавшись на специфических операторах для повышения его эффективности и адаптивности. После анализа основ и механик алгоритма, мы обсудим идеи по улучшению производительности и возможности анализа сложных пространств решений, предлагая новые подходы для расширения его функциональности как инструмента для оптимизации.
В статье рассматривается алгоритм AOS (Atomic Orbital Search), который использует концепции атомной орбитальной модели для моделирования поиска решений. Алгоритм основывается на вероятностных распределениях и динамике взаимодействий в атоме. В статье подробно обсуждаются математические аспекты AOS, включая обновление положений кандидатов решений и механизмы поглощения и выброса энергии. AOS открывает новые горизонты для применения квантовых принципов в вычислительных задачах, предлагая инновационный подход к оптимизации.
В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.
В статье познакомимся с методами оптимизации библиотеки ALGLIB для MQL5. Статья включает простые и наглядные примеры применения ALGLIB для решения задач оптимизации, что сделает процесс освоения методов максимально доступным. Мы подробно рассмотрим подключение таких алгоритмов, как BLEIC, L-BFGS и NS, и на их основе решим простую тестовую задачу.
В статье рассматривается метаэвристический алгоритм AEO, который моделирует взаимодействия между компонентами экосистемы, создавая начальную популяцию решений и применяя адаптивные стратегии обновления, и подробно описываются этапы работы AEO, включая фазы потребления и разложения, а также различные стратегии поведения агентов. Статья знакомит с особенностями и преимуществами данного алгоритма.
Статья посвящена алгоритму оптимизации африканскими буйволами (ABO), метаэвристическому подходу, разработанному в 2015 году на основе уникального поведения этих животных. В статье подробно описаны этапы реализации алгоритма и его эффективность в поиске решений сложных задач, что делает его ценным инструментом в области оптимизации.
В статье представлен Алгоритм Искусственного Орошения (ASHA) – новый метаэвристический метод, разработанный для решения общих задач оптимизации. Основанный на моделировании процессов потоков и накопления воды, этот алгоритм выстраивает концепцию идеального поля, в котором каждая единица ресурса (вода) вызывается для поиска оптимального решения. Узнайте, как ASHA адаптирует принципы потока и накопления для эффективного распределения ресурсов в условиях поискового пространства, а также познакомьтесь с его реализацией и итогами тестирования.
В данной статье мы продолжим погружение в реализацию алгоритма ACMO (Atmospheric Cloud Model Optimization). В частности, обсудим два ключевых аспекта: перемещение облаков в регионы с низким давлением и моделирование процесса дождя, включая инициализацию капель и распределение их между облаками. Мы также разберем другие методы, которые играют важную роль в управлении состоянием облаков и обеспечении их взаимодействия с окружающей средой.
Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.
В данной статье подробно рассматривается алгоритм оптимизации, вдохновленный стрельбой из лука, с акцентом на использование метода рулетки в качестве механизма выбора перспективных областей для "стрел". Этот метод позволяет оценивать качество решений и отбирать наиболее многообещающие позиции для дальнейшего изучения.
В статье представлена оригинальная версия алгоритма бактериальной хемотаксисной оптимизации (BCO) и его модифицированный вариант. Мы подробно рассмотрим все отличия, уделяя особое внимание новой версии BCOm, которая упрощает механизм движения бактерий, снижает зависимость от истории изменений позиций и использует более простые математические операции по сравнению с перегруженной вычислениями оригинальной версией. Также будут проведены тесты и подведены итоги.
В статье рассматривается алгоритм табу-поиска — один из первых и наиболее известных методов метаэвристики. Мы подробно разберем, как работает алгоритм, начиная с выбора начального решения и исследования соседних вариантов, с акцентом на использование табу-листа. Статья охватывает ключевые аспекты алгоритма и его особенности.
Dear traders and investors! We present to you the MT5 Optimization Booster – an innovative product that will revolutionize your optimization experience on MetaTrader 5! The MT5 Optimization Booster is based on the innovative Quantum Swap Protocol (QSP) algorithm – a unique proprietary optimization strategy that forms the core of the product and elevates the process of finding optimal solutions to a new level. After the purchase , be sure to contact me . The product is designed to enhance the