Andrey Dik
Andrey Dik
4.5 (30)
  • Informações
11+ anos
experiência
25
produtos
16
versão demo
14
trabalhos
0
sinais
0
assinantes
I AM LOOKING FOR A PUBLISHER TO PUBLISH A BOOK ABOUT OPTIMIZATION ALGORITHMS.

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.

IF YOU LIKE MY ARTICLES AND DEVELOPMENTS IN THE FIELD OF OPTIMIZATION, YOU CAN SUPPORT THE AUTHOR AND BUY OR RENT A POWERFUL LIBRARY OF THE OPTIMIZATION ALGORITHM:
https://www.mql5.com/en/market/product/92455
https://www.mql5.com/en/market/product/93703
or any other of my products:
https://www.mql5.com/en/users/joo/seller


To make an order for MT4 and MT5 through freelancing : https://www.mql5.com/en/job/new?prefered=joo
I make connections to exchanges, there are ready-made connectors.
Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
https://www.icmarkets.com/ru/?camp=4941
Andrey Dik
Publicado o artigo Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)
Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)

Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.

2
Andrey Dik
Publicado o artigo Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)
Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Статья раскрывает потенциал алгоритма ANS, как важного шага в развитии гибких и интеллектуальных методов оптимизации, способных учитывать специфику задачи и динамику окружающей среды в пространстве поиска.

2
Andrey Dik
Publicado o artigo Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты

Во второй части статьи мы соберем химические операторы в единый алгоритм и представим подробный анализ результатов его работы. Узнаем, как метод оптимизации химическими реакциями (CRO) справился с вызовом в решении сложных задач на тестовых функциях.

2
Andrey Dik
Publicado o artigo Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.

2
Andrey Dik
Publicado o artigo Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)
Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.

2
Andrey Dik
Publicado o artigo Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)
Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Представляем вам алгоритм Artificial Cooperative Search (ACS). Этот инновационный метод использует бинарную матрицу и несколько динамичных популяций, основанных на мутуалистических отношениях и кооперации, для быстрого и точного нахождения оптимальных решений. Уникальный подход ACS к "хищникам" и "жертвам" позволяет добиваться отличных результатов в задачах численной оптимизации.

2
Andrey Dik
Publicado o artigo Алгоритм кодового замка (Сode Lock Algorithm, CLA)
Алгоритм кодового замка (Сode Lock Algorithm, CLA)

В этой статье мы переосмыслим кодовые замки, превращая их из механизмов защиты в инструменты для решения сложных задач оптимизации. Откройте для себя мир кодовых замков, не как простых устройств безопасности, но как вдохновения для нового подхода к оптимизации. Мы создадим целую популяцию "замков", где каждый замок представляет собой уникальное решение задачи. Затем мы разработаем алгоритм, который будет "вскрывать" эти замки и находить оптимальные решения в самых разных областях, от машинного обучения до разработки торговых систем.

4
Andrey Dik
Publicado o artigo Алгоритм кометного следа (Comet Tail Algorithm, CTA)
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.

3
Andrey Dik
Publicado o artigo Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)
Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)

Уникальный алгоритм оптимизации, вдохновленный эволюцией панциря черепахи. Алгоритм TSEA эмулирует постепенное формирование ороговевших участков кожи, которые представляют собой оптимальные решения задачи. Лучшие решения становятся более "твердыми" и располагаются ближе к внешней поверхности, в то время как менее удачные решения остаются "мягкими" и находятся внутри. Алгоритм использует кластеризацию решений по качеству и расстоянию, позволяя сохранять менее успешные варианты и обеспечивая гибкость и адаптивность.

3
Andrey Dik
Publicado o artigo Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность

Во второй части статьи перейдем к практической реализации алгоритма BSO, проведем тесты на тестовых функциях и сравним эффективность BSO с другими методами оптимизации.

4
Andrey Dik
Publicado o artigo Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

В данной статье мы рассмотрим инновационный метод оптимизации, названный BSO (Brain Storm Optimization), который вдохновлен природным явлением - "мозговым штурмом". Мы также обсудим новый подход к решению многомодальных задач оптимизации, который использует метод BSO и позволяет находить несколько оптимальных решений без необходимости заранее определять количество подпопуляций. В статье мы также рассмотрим методы кластеризации K-Means и K-Means++.

4
Andrey Dik
Andrey Dik
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Andrey Dik
Publicado o artigo Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)

В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".

3
Andrey Dik
Publicado o artigo Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)
Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)

В статье исследуется алгоритм BSA, основанный на поведении птиц, который вдохновлен коллективным стайным взаимодействием птиц в природе. Различные стратегии поиска индивидов в BSA, включая переключение между поведением в полете, бдительностью и поиском пищи, делают этот алгоритм многоаспектным. Он использует принципы стайного поведения, коммуникации, адаптивности, лидерства и следования птиц для эффективного поиска оптимальных решений.

3
Andrey Dik
Publicado o artigo Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации
Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации

В этой статье мы рассмотрим генератор случайных чисел Mersenne Twister и сравним со стандартным в MQL5. Узнаем влияние качества случайных чисел генераторов на результаты алгоритмов оптимизации.

4
Andrey Dik
Publicado o artigo Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)

Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.

4
Andrey Dik
Publicado o artigo Гибридизация популяционных алгоритмов. Последовательная и параллельная схема
Гибридизация популяционных алгоритмов. Последовательная и параллельная схема

В статье мы погрузимся в мир гибридизации алгоритмов оптимизации, рассмотрев три ключевых типа: смешивание стратегий, последовательную и параллельную гибридизации. Мы проведем серию экспериментов, сочетая и тестируя соответствующие алгоритмы оптимизации.

3
Andrey Dik
Publicado o artigo Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть II)
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть II)

Продолжение эксперимента, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Результаты исследования.

3
Andrey Dik
AO Core Чтобы обеспечить самооптимизацию советника для реализации любых требуемых возможностей и функциональностей, используется схема, представленная на рисунке 1. На временной шкале "История" советник позиционируется в точке "время сейчас", где принимается решение об оптимизации...
Andrey Dik
AO Core To ensure self-optimization of the advisor for implementing any required capabilities and functionalities, the scheme presented in Figure 1 is employed. On the "History" timeline, the advisor is positioned at the "time now" point where the optimization decision is made...