Andrey Dik / Профиль
- Информация
11+ лет
опыт работы
|
2
продуктов
|
207
демо-версий
|
14
работ
|
0
сигналов
|
0
подписчиков
|
Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Все мои публикации: https://www.mql5.com/en/users/joo/publications
Разрабатываю системы по технологиям машинного обучения с 2007 года и в области искусственного
интеллекта, оптимизации и прогнозирования.
Принимал активное участие в развитии платформы МТ5, таких как введение поддержки универсальных параллельных
вычислений на GPU и CPU с OpenCL, тестирование и бектестинг распределённых
вычислений в локальной сети и облаке при оптимизации в МТ5, мои тестовые функции входят в штатную поставку терминала.
ЕСЛИ ВАМ НРАВЯТСЯ МОИ СТАТЬИ И РАЗРАБОТКИ В ОБЛАСТИ ОПТИМИЗАЦИИ - МОЖЕТЕ ПОДДЕРЖАТЬ АВТОРА И КУПИТЬ ИЛИ АРЕНДОВАТЬ МОЩНУЮ БИБЛИОТЕКУ АЛГОРИТМА ОПТИМИЗАЦИИ:
https://www.mql5.com/en/market/product/92455
https://www.mql5.com/en/market/product/93703
или любой другой из моих продуктов:
https://www.mql5.com/en/users/joo/seller
Сделать заказ для MT4 и MT5 через фриланс : https://www.mql5.com/ru/job/new?prefered=joo
Осуществляю подключения к биржам, есть готовые коннекторы.
Рекомендуемые брокеры:
https://rbfxdirect.com/ru/lk/?a=dnhp
https://www.icmarkets.com/ru/?camp=4941
В статье представлена оригинальная версия алгоритма бактериальной хемотаксисной оптимизации (BCO) и его модифицированный вариант. Мы подробно рассмотрим все отличия, уделяя особое внимание новой версии BCOm, которая упрощает механизм движения бактерий, снижает зависимость от истории изменений позиций и использует более простые математические операции по сравнению с перегруженной вычислениями оригинальной версией. Также будут проведены тесты и подведены итоги.
В статье рассматривается алгоритм табу-поиска — один из первых и наиболее известных методов метаэвристики. Мы подробно разберем, как работает алгоритм, начиная с выбора начального решения и исследования соседних вариантов, с акцентом на использование табу-листа. Статья охватывает ключевые аспекты алгоритма и его особенности.
Уважаемые трейдеры и инвесторы! Представляем вам MT5 Optimization Booster – инновационный продукт, который перевернет ваши представления об оптимизации на MetaTrader 5! MT5 Optimization Booster основан на инновационном алгоритме Quantum Swap Protocol (QSP) - уникальной авторской стратегии оптимизации, которая составляет ядро продукта и выводит процесс поиска оптимальных решений на новый уровень. Продукт призван расширить возможности штатного оптимизатора по всем направлениям: 1. Неограниченное
В данной статье рассматривается алгоритм искусственных водорослей (AAA), разработанный на основе биологических процессов, характерных для микроводорослей. Алгоритм включает спиральное движение, эволюционный процесс и адаптацию, что позволяет ему решать задачи оптимизации. Статья предлагает глубокий анализ принципов работы AAA и его потенциала в математическом моделировании, подчеркивая связь между природой и алгоритмическими решениями.
В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.
Статья посвящена алгоритму AMO, который моделирует процесс сезонной миграции животных в поисках оптимальных условий для жизни и размножения. Основные особенности AMO включают использование топологического соседства и вероятностный механизм обновления, что делает его простым в реализации и гибким для различных оптимизационных задач.
В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.
В статье мы познакомимся с алгоритмом искусственного пчелиного улья (ABHA), разработанным в 2009 году. Алгоритм направлен на решение задач непрерывной оптимизации. Мы рассмотрим, как ABHA черпает вдохновение из поведения пчелиной колонии, где каждая пчела выполняет уникальную роль, что способствует более эффективному поиску ресурсов.
Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.
Эта статья представляет увлекательное погружение в мир социального поведения живых организмов и его влияние на создание новой математической модели — ASBO (Adaptive Social Behavior Optimization). Мы рассмотрим, как принципы лидерства, соседства и сотрудничества, наблюдаемые в обществах живых существ, вдохновляют разработку инновационных алгоритмов оптимизации.
Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.
Статья раскрывает потенциал алгоритма ANS, как важного шага в развитии гибких и интеллектуальных методов оптимизации, способных учитывать специфику задачи и динамику окружающей среды в пространстве поиска.
Во второй части статьи мы соберем химические операторы в единый алгоритм и представим подробный анализ результатов его работы. Узнаем, как метод оптимизации химическими реакциями (CRO) справился с вызовом в решении сложных задач на тестовых функциях.
В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.
В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.
Представляем вам алгоритм Artificial Cooperative Search (ACS). Этот инновационный метод использует бинарную матрицу и несколько динамичных популяций, основанных на мутуалистических отношениях и кооперации, для быстрого и точного нахождения оптимальных решений. Уникальный подход ACS к "хищникам" и "жертвам" позволяет добиваться отличных результатов в задачах численной оптимизации.
В этой статье мы переосмыслим кодовые замки, превращая их из механизмов защиты в инструменты для решения сложных задач оптимизации. Откройте для себя мир кодовых замков, не как простых устройств безопасности, но как вдохновения для нового подхода к оптимизации. Мы создадим целую популяцию "замков", где каждый замок представляет собой уникальное решение задачи. Затем мы разработаем алгоритм, который будет "вскрывать" эти замки и находить оптимальные решения в самых разных областях, от машинного обучения до разработки торговых систем.