MQL5入門(第2部):定義済み変数、共通関数、制御フロー文の操作
連載第2部の光り輝く旅に出かけましょう。これらの記事は単なるチュートリアルではなく、プログラミング初心者と魔法使いが共に集う魔法の世界への入り口です。この旅を本当に魔法のようなものにしているのは何でしょうか。連載第2部は、複雑な概念を誰にでも理解できるようにした、さわやかなシンプルさが際立っています。読者の質問にお答えしながら、双方向的に私たちと関わることで、充実した個別学習体験をお約束します。MQL5を理解することが誰にとっても冒険となるようなコミュニティを作りましょう。魔法の世界へようこそ。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第7回):オーサムオシレーターシグナルを持つジグザグ
この記事の多通貨エキスパートアドバイザー(EA)は、オーサムオシレーター(AO、Awesome Oscillator)でフィルタされたジグザグ(ZigZag)指標を使用するまたは互いのシグナルをフィルタするEA(自動売買)です。
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
MQL5入門(第17回):トレンド反転のためのエキスパートアドバイザーの構築
この記事では、トレンドラインのブレイクアウトや反転を利用したチャートパターン認識に基づいて取引をおこなうMQL5のエキスパートアドバイザー(EA)の構築方法を初心者向けに解説します。トレンドラインの値を動的に取得し、プライスアクションと比較する方法を学ぶことで、読者は上昇・下降トレンドライン、チャネル、ウェッジ、トライアングルなどのチャートパターンを識別し取引できるEAを開発できるようになります。
Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出
この記事では、経済ニュースの発表、投資家の行動、さまざまな要因が市場のトレンド反転にどのような影響を与えるかを探ります。ビデオによる説明もあり、MQL5のコードをプログラムに組み込むことで、トレンドの反転を検出し、警告を発し、市場の状況に応じて適切な行動を取ることができます。これは、本連載の過去の記事に基づいています。
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)
この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
デマーカーによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、デマーカー(DeMarker)指標による取引システムの作り方を紹介します。
データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF
打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(III)
連載第3回へようこそ。今回は、日足のトレンドに沿った最適なエントリーポイントを特定する戦略として、ダイバージェンスの活用について詳しく解説します。また、トレーリングストップロスに似た、しかし独自の機能を備えたカスタム利益ロック機構もご紹介します。さらに、Trend Constraint EAを高度化し、既存の取引条件を補完する形で新たなエントリー条件を追加します。今後も、MQL5を活用したアルゴリズム開発の実践的な応用方法を深掘りし、実際に使えるテクニックや洞察を継続的にお届けしていきます。
独自のLLMをEAに総合する(第5部): LLMを使った取引戦略の開発とテスト(I) - 微調整
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整(ファインチューニング)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
初心者からエキスパートへ:Reporting EAで詳細な取引レポートをマスターする
本記事では、取引レポートの内容をより充実させ、最終レポートをPDF形式としてメール配信する方法について解説します。これは前回の記事からさらに一歩踏み込んだ内容であり、MQL5とPythonを組み合わせて、より便利でプロフェッショナルな形式の取引レポートを生成し、スケジュールする方法を継続して探求するものです。本記事を通じて、MQL5エコシステム内で取引レポート生成を最適化するための知見を得ていただければ幸いです。
SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。
勢力指数による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、新しく、勢力指数(Force Index)テクニカル指標と、この指標を使った取引システムの作り方についてご紹介します。
自動で動くEAを作る(第13回):自動化(V)
フローチャートとは何かご存じでしょうか。使い方はご存じですか。フローチャートは初心者向けだとお考えでしょうか。この新しい記事では、フローチャートの操作方法を説明します。
一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)
チャート上直接の発注システムをより完全にしましょう。この記事では、発注システムを修正する方法、またはより直感的にする方法を示します。
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
初心者からエキスパートへ:ローソク足のプログラミング
この記事では、MQL5プログラミングの第一歩を、完全な初心者でも理解できるように解説します。よく知られているローソク足パターンを、実際に機能するカスタムインジケーターへと変換する方法を紹介します。ローソク足パターンは、実際の価格変動を反映し、市場の転換を示唆するため、非常に有用です。チャートを目視で確認してパターンを探す手法ではミスや非効率が生じやすいため、この記事では、パターンを自動的に識別・ラベル付けしてくれるインジケーターを作成する方法を説明します。その過程で、インデックス(索引)、時系列、ATR(市場の変動性に応じた精度向上のため)などの重要な概念についても解説し、今後のプロジェクトで再利用可能なカスタムローソク足パターンライブラリの開発にも触れていきます。
データサイエンスと機械学習(第17回):木の中のお金?外国為替取引におけるランダムフォレストの芸術と科学
金融情勢を解読する際の芸術性と正確性の融合についてガイドします。アルゴリズム錬金術の秘密を発見してください。ランダムフォレストがデータを予測能力に変換する方法を明らかにし、株式市場の複雑な地形をナビゲートするための独自の視点を提供します。金融の魔術の核心に触れ、市場の動向を形作り、収益の機会を開拓するランダムフォレストの役割を解き明かす旅にご参加ください。
MetaTrader 5のEMAクロスオーバーに基づくカスケード注文取引戦略
この記事は、MetaTrader 5のEMAクロスオーバーに基づく自動化アルゴリズムのデモをガイドしています。価格帯の動作分析からリスク管理まで、MQL5のエキスパートアドバイザー(EA)を示し、MetaTrader 5でテストするためのあらゆる側面に関する詳細情報を含みます。
一からの取引エキスパートアドバイザーの開発(第24部):システムの堅牢性の提供(I)
この記事では、堅牢で安全な使用を保証するために、システムの信頼性を高めます。望ましい堅牢性を実現する方法の1つは、コードを可能な限り再利用して、常にさまざまな場合にテストされるようにすることです。しかし、これは方法の1つにすぎません。もう1つは、OOPを使用することです。
リプレイシステムの開発 - 市場シミュレーション(第19回):必要な調整
ここでは、コードに新しい関数を追加する必要がある場合に、スムーズかつ簡単に追加できるように基礎を整えます。現在のコードでは、有意義な進歩を遂げるために必要な事柄の一部をまだカバーまたは処理できません。最小限の労力で特定のことを実装できるようにするには、すべてを構造化する必要があります。すべてを正しくおこなえば、対処が必要なあらゆる状況に非常に簡単に適応できる、真に普遍的なシステムを得ることができます。
Frames Analyzerツールによるタイムトレード間隔の魔法
Frames Analyzerとは何でしょうか。これは、パラメータ最適化の直後に作成されたMQDファイルまたはデータベースを読み取ることにより、ストラテジーテスター内外でパラメータ最適化中に最適化フレームを分析するためのエキスパートアドバイザー(EA)のプラグインモジュールです。これらの最適化の結果はFrames Analyzerツールを使用している他のユーザーと共有して、結果について話し合うことができます。
リプレイシステムの開発 - 市場シミュレーション(第12回):シミュレーターの誕生(II)
シミュレーターの開発は、見た目よりもずっと面白いものです。事態はさらに面白くなってきているため、今日は、この方向にもう少し踏み込んでみましょう。
ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。
初心者からエキスパートへ:サポートとレジスタンスの強度指標(SRSI)
本記事では、MQL5プログラミングを活用して市場の価格レベルを正確に特定し、弱いレベルと強いレベルを見分ける方法についての知見を共有します。さらに、実用的なサポートおよびレジスタンス強度インジケーター(SRSI)を完全に開発していきます。
トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル
隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。
データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。
独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
MQL5入門(第12回):初心者のためのカスタムインジケーター作成ガイド
MQL5でカスタムインジケーターを構築する方法を学びます。プロジェクトベースのアプローチを採用します。この初心者向けガイドでは、インジケーターバッファ、プロパティ、トレンドの視覚化について解説し、段階的に学習を進めることができます。
リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)
バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。
MQL5で日次ドローダウンリミッターEAを作成する
この記事では、取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成方法を、詳細な観点から解説しています。これはMQL5のシステムを自動化し、デイリードローダウンをコントロールするのに役立ちます。
MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)
この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。
MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略
この記事では、MACDおよびRSIインジケーターと統計的手法を組み合わせた取引レイヤリング戦略を紹介します。このアプローチは、MQL5による自動売買において、ポジションを動的にスケーリングすることを目的としています。カスケード構造による戦略のアーキテクチャを解説し、主要なコードセグメントを通じて実装方法を詳述します。さらに、パフォーマンスを最適化するためのバックテスト手順についても案内します。最後に、この戦略が持つ可能性と、今後の自動売買戦略への発展性について考察します。
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする
この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。
取引における多項式モデル
本記事では、直交多項式について説明します。直交多項式を活用することで、より正確で効果的な市場分析が可能になり、トレーダーはより多くの情報に基づいた意思決定をおこなうことができるようになります。
データサイエンスと機械学習(第16回):決定木を見直す
連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。