MetaTrader 5での手動取引およびアルゴリズム取引に関する記事

icon

このカテゴリは、手動取引から完全自動取引まで、エキスパートアドバイザーからMQL5ウィザードを使用した自動売買ロボットの開発まで、トレーディングのすべての局面に関する記事を特集します。ポジション管理、取引イベントの処理、資金管理 - これらレーディングに不可欠なものはこれらの記事の中でカバーされています。

どのように取引シグナルをコピーするか、どのようにエキスパートアドバイザーの24時間可能なオペレーションを提供するのか、どのように自動売買ロボットを作成するのか、どのようにLinuxとMacOS上でMetaTraderを実行するのか、ソーシャルトレーディングとは何か、どのように自動売買ロボットを注文するのかを学んでください。

新しい記事を追加
最新 | ベスト
preview
Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

この記事では、RSIと移動平均指標に基づいて自動売買をおこなうDeus EAの実装手順を概説します。
preview
OBVによる取引システムの設計方法を学ぶ

OBVによる取引システムの設計方法を学ぶ

今回は、初心者向けのシリーズとして、人気のあるいくつかの指標をもとに取引システムを設計する方法について、新しい記事をお届けします。今回は、新しい指標であるOBV (On Balance Volume)を学び、その使い方とそれに基づいた取引システムの設計を学びます。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
preview
MQL5オブジェクト指向プログラミング(OOP)について

MQL5オブジェクト指向プログラミング(OOP)について

開発者として、私たちは、特に異なる動作をするオブジェクトがある場合に、コードを重複せずに再利用可能で柔軟なソフトウェアを作成し開発する方法を学ぶ必要があります。これは、オブジェクト指向プログラミングのテクニックと原則を使うことでスムーズにおこなうことができます。この記事では、MQL5オブジェクト指向プログラミングの基本を紹介し、この重要なトピックの原則とプラクティスをソフトウェアでどのように使用できるかを説明します。
preview
日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。
モメンタムによるトレーディングシステムの設計方法を学ぶ
モメンタムによるトレーディングシステムの設計方法を学ぶ

モメンタムによるトレーディングシステムの設計方法を学ぶ

前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。
preview
流動性狩り取引戦略

流動性狩り取引戦略

流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。
preview
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
LSTMニューラルネットワークを用いた時系列予測の作成:価格の正規化と時間のトークン化

LSTMニューラルネットワークを用いた時系列予測の作成:価格の正規化と時間のトークン化

この記事では、日次レンジを使用して市場データを正規化し、市場予測を強化するためにニューラルネットワークを訓練する簡単な戦略を概説します。開発されたモデルは、既存のテクニカル分析の枠組みと組み合わせて、あるいは単独で、市場全体の方向性を予測するのに役立てることができます。この記事で概説した枠組みは、テクニカルアナリストであれば、手動と自動売買の両方の戦略に適したモデルを開発するために、さらに改良を加えることができます。
preview
MQL5の高度な変数とデータ型

MQL5の高度な変数とデータ型

変数とデータ型は、MQL5プログラミングだけでなく、どのプログラミング言語でも非常に重要なトピックです。MQL5の変数とデータ型は、単純なものと高度なものに分類できます。単純なものについては前回の記事ですでに述べたので、今回は高度なものを特定し、それについて学ぶことにします。
preview
AD(蓄積/分散、Accumulation/Distribution)による取引システムの設計方法を学ぶ

AD(蓄積/分散、Accumulation/Distribution)による取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事へようこそ。今回は、AD(蓄積/分散、Accumulation/Distribution)という新しいテクニカル指標について学び、シンプルなAD取引戦略に基づいてMQL5取引システムを設計する方法を学びます。
preview
ニュース取引が簡単に(第3回):取引の実施

ニュース取引が簡単に(第3回):取引の実施

この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。
preview
モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引

モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引

この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。
preview
MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5で様々なポジション操作を管理するための開発者用ツールキットの作成方法をご紹介します。この記事では、MQL5でポジション管理タスクを処理する際に発生するさまざまなエラーの自動処理とレポートも含め、簡単なものから高度なものまでポジション管理操作を実行する関数ライブラリ(ex5)の作成方法を紹介します。
preview
データサイエンスと機械学習(第12回):自己学習型ニューラルネットワークは株式市場を凌駕することができるのか?

データサイエンスと機械学習(第12回):自己学習型ニューラルネットワークは株式市場を凌駕することができるのか?

常に株式市場を予測しようとするのにお疲れでないでしょうか。より多くの情報に基づいた投資判断をするための水晶玉があったらとお思いでしょうか。自己学習型ニューラルネットワークは、あなたが探していたソリューションかもしれません。この記事では、これらの強力なアルゴリズムが、株式市場を凌駕する「波に乗る」のに役立つのかどうかを探ります。膨大な量のデータを分析し、パターンを特定することで、自己訓練されたニューラルネットワークは、しばしば人間のトレーダーよりも精度の高い予測をおこなうことができます。この最先端のテクノロジーを使って、利益を最大化し、よりスマートな投資判断をおこなう方法をご紹介します。
preview
一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。
preview
自動で動くEAを作る(第12回):自動化(IV)

自動で動くEAを作る(第12回):自動化(IV)

自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
preview
一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)

一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)

今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。
preview
MFIによる取引システムの設計方法を学ぶ

MFIによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する連載のこの新しい記事では、新しくマネーフローインデックス(Money Flow Index、MFI)テクニカル指標を考察します。その詳細を学び、MQL5によって簡単な取引システムを開発し、MetaTrader 5で実行します。
preview
外国為替市場の季節性から利益を得る

外国為替市場の季節性から利益を得る

例えば、冬になると新鮮な野菜の値段が上がったり、霜が降りると燃料の値段が上がったりすることはよく知られていますが、同じようなパターンが外国為替市場にもあることを知っている人は少ないです。
preview
パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

この記事では、MetaTrader 4および5の取引の自動化チェーン全体を完成するだけでなく、より興味深いことができるようになった改善の最初の部分を示します。今後、このソリューションにより、EAの作成と最適化の両方を完全に自動化し、効果的な取引構成を見つけるための人件費を最小限に抑えることができます。
preview
データサイエンスと機械学習(第09回):K近傍法(KNN)

データサイエンスと機械学習(第09回):K近傍法(KNN)

これは、訓練データセットから学習しない遅延アルゴリズムです。代わりにデータセットを保存し、新しいサンプルが与えられるとすぐに動作します。シンプルでありながら、実世界でさまざまなケースに応用されています。
preview
ティッカーテープパネルの作成:基本バージョン

ティッカーテープパネルの作成:基本バージョン

ここでは、通常取引所の相場表示に使われるプライスティッカーを使った画面を作成する方法を紹介します。複雑な外部プログラミングを使わず、MQL5だけでやってみようと思います。
preview
ウィリアムズPRによる取引システムの設計方法を学ぶ

ウィリアムズPRによる取引システムの設計方法を学ぶ

MetaTrader 5で使用される最も人気のあるテクニカル指標によってMQL5で取引システムを設計する方法を学ぶ連載の新しい記事です。今回は、ウィリアムズの%R指標による取引システムの設計方法について学びます。
preview
データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用

データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用

CatBoost AIモデルは、その予測精度、効率性、散在する困難なデータセットに対する頑健性により、機械学習コミュニティの間で最近大きな人気を博しています。この記事では、外国為替市場を打ち負かすために、この種のモデルをどのように導入するかについて詳しく説明します。
preview
EAを用いたリスクとキャピタルの管理

EAを用いたリスクとキャピタルの管理

この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
preview
一からの取引エキスパートアドバイザーの開発(第29部):おしゃべりプラットフォーム

一からの取引エキスパートアドバイザーの開発(第29部):おしゃべりプラットフォーム

この記事では、MetaTrader 5プラットフォームをしゃべらせる方法を学びます。EAをもっと楽しくしたらどうでしょうか。金融市場の取引は退屈で単調すぎることがよくありますが、私たちはこの仕事の疲れを軽減することができます。依存症などの問題を経験している方にとってはこのプロジェクトは危険な場合があるのでご注意ください。ただし、一般的には、それは退屈を軽減するだけです。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、多時間枠または単一時間枠の「三角移動平均」という1つの指標のみを使用します。
preview
一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)

一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)

受注システムをより柔軟にします。ここでは、コードをより柔軟にする変更を検討して、ポジションストップレベルをより迅速に変更できるようにします。
preview
ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)

ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)

この記事では、チャイキンボラティリティ(CHV、Chaikin Volatility)という名前の、ボラティリティに基づく後1つの指標を提供します。カスタム指標の使用方法と構築方法を確認した後、カスタム指標の構築方法を理解します。使用できるいくつかの簡単な戦略を共有し、どちらがより優れているかを理解するためにテストします。
ターミナルサービスクライアントどのようにポケットPCをBig Brotherの相棒にするか
ターミナルサービスクライアントどのようにポケットPCをBig Brotherの相棒にするか

ターミナルサービスクライアントどのようにポケットPCをBig Brotherの相棒にするか

この記事は、MT4クライアントターミナルのインストールされたリモートPCにPDAを経由し接続する方法を紹介します。
preview
独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
初心者のためのMetaTrader 5とRによるアルゴリズム取引

初心者のためのMetaTrader 5とRによるアルゴリズム取引

RとMetaTrader 5をシームレスに統合する技術を解き明かしながら、金融分析とアルゴリズム取引が出会う魅力的な探求に乗り出しましょう。この記事は、MetaTrader 5の強力な取引機能とRの精巧な分析の領域を橋渡しするためのガイドです。
preview
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。
preview
自動で動くEAを作る(第14回):自動化(VI)

自動で動くEAを作る(第14回):自動化(VI)

今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。
preview
確率最適化と最適制御の例

確率最適化と最適制御の例

SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。
preview
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。
preview
一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

今日は、発注システムを次のレベルに引き上げます。ただしその前に、いくつかの問題を解決する必要があります。ここで、どのように働きたいか、取引日に何をするかに関連するいくつかの質問があります。
preview
ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

デザインパターンには、生成デザインパターン、構造デザインパターン、振る舞いデザインパターンの3タイプがあることを説明しました。コードをクリーンにしながらオブジェクト間の相互作用の方法を設定するのに役立つ、残りの振る舞いタイプのパターンの説明を完成させます。