母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム
この記事では、無生物の自然にヒントを得た別の最適化アルゴリズムである荷電系探索(CSS)アルゴリズムについて検討します。この記事の目的は、物理学と力学の原理に基づいた新しい最適化アルゴリズムを提示することです。
MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上
の記事では、MQL5からTelegramへのメッセージおよびスクリーンショット送信に使用されている既存コードを、再利用可能なモジュール関数へと整理し、リファクタリングをおこないます。これによりプロセス全体が効率化され、複数インスタンスでの実行効率が高まるだけでなく、コードの管理も容易になります。
MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合
この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。
時系列分類問題における因果推論
この記事では、機械学習を用いた因果推論の理論と、Pythonによるカスタムアプローチの実装について見ていきます。因果推論と因果思考は哲学と心理学にルーツを持ち、現実を理解する上で重要な役割を果たしています。
MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する
この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。
一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)
Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)
この記事では、自然界の生物の遺伝物質で起こる自然なプロセスをモデル化した2進数遺伝的アルゴリズム(binary genetic algorithm:BGA)を見ていきます。
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第2回)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の一部です。今回は、コードの構成、最初のヘッダーファイルとクラス、そしてテストの書き方について説明します。この記事には、テスト駆動開発(Test-Driven-Development)の実践と、それをこのプロジェクトにどのように適用しているかについての簡単なメモも含まれています。
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)
(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。
多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択
自動最適化の第1段階はすでに実装されています。いくつかの基準に従ってさまざま銘柄と時間枠の最適化を実行し、各パスの結果に関する情報をデータベースに保存します。ここで、最初の段階で見つかったものから最適なパラメータセットのグループを選択します。
PythonとMQL5における局所的特徴量選択の適用
この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信
この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。
ブレインストーム最適化アルゴリズム(第1部):クラスタリング
この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。
因果推論における時系列クラスタリング
機械学習におけるクラスタリングアルゴリズムは、元データを類似した観察結果を持つグループに分けることができる重要な教師なし学習法です。これらのクラスタを用いることで、特定の市場クラスタを分析したり、新しいデータを基に最も安定したクラスタを探索したり、因果関係を推定したりすることが可能です。本稿では、Pythonによる時系列クラスタリングのための独自の手法を提案します。
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第5回)
この記事は、MQTT 5.0プロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の第5回です。今回は、PUBLISHパケットの構造、Publishフラグの設定方法、Topic Name文字列のエンコード方法、必要な場合のPacket Identifierの設定方法について説明します。
Rest APIを統合したMQL5強化学習エージェントの開発(第4回):MQL5でクラス内の関数を整理する
この記事では、MQL5における手続き型コーディングからオブジェクト指向プログラミング(OOP)への移行について、REST APIとの統合を中心に説明します。今日は、HTTPリクエスト関数(GETとPOST)をクラスにまとめる方法について説明します。コードのリファクタリングについて詳しく見ていき、孤立した関数をクラスメソッドに置き換える方法を紹介します。記事には実践的な例とテストが含まれています。

Across Neighbourhood Search (ANS)
この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。

MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)
この第3部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルヘッジEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。

母集団最適化アルゴリズム:社会集団の進化(ESG)
多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。

GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する
この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)
本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。

Candlestick Trend Constraintモデルの構築(第7回):EA開発モデルの改良
今回は、エキスパートアドバイザー(EA)開発のための指標の詳細な準備について掘り下げていきます。議論の中では、現行バージョンの指標にさらなる改良を加えることで、その精度と機能性の向上を図ります。さらに、前バージョンがエントリポイントの識別に限られていた制約に対応するため、新たにエグジットポイントを特定する機能を導入します。

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。

RestAPIを統合したMQL5強化学習エージェントの開発(第1回):MQL5でRestAPIを使用する方法
この記事では、異なるアプリケーションやソフトウェアシステム間の相互作用におけるAPI (Application Programming Interface)の重要性についてお話しします。アプリケーション間のやり取りを簡素化し、データや機能を効率的に共有することを可能にするAPIの役割を見ていきます。

因果推論における傾向スコア
本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)
この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理
進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。

RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数
この記事では、MQL5がPythonやFastAPIとどのように相互作用できるか、MQL5のHTTP呼び出しを使用してPythonの三目並べゲームと相互作用する方法について説明します。この記事では、この統合のためのFastAPIを使用したAPIの作成について説明し、MQL5でのテストスクリプトを提供することで、MQL5の多用途性、Pythonのシンプルさ、そして革新的なソルーションを生み出すために異なるテクノロジーを接続するFastAPIの有効性を強調しています。

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択
以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。

プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA
MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。

MQL5における組合せ対称交差検証法
この記事では、ストラテジーテスターの低速&完全アルゴリズムを使用してストラテジーを最適化した後に過剰学習が発生する可能性の程度を測定するために、純粋なMQL5における組合せ対称交差検証法の実装を紹介します。

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)
良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。

MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(最終回)
この記事は、MQTT 5.0プロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の最終回です。ライブラリはまだ製品化されていませんが、この部分では、他の証券会社から入手したティック(またはレート)でカスタム銘柄を更新するためにクライアントを使用します。ライブラリの現在の状況、MQTT 5.0プロトコルに完全に準拠するために足りないもの、可能なロードマップ、そしてその開発をフォローし貢献する方法についての詳細は、この記事の最後をご覧ください。

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。

プライスアクション分析ツールキットの開発(第8回):Metrics Board
最も強力なプライスアクション分析ツールの一つである「Metrics Board」は、ワンクリックで重要な市場指標を即座に表示し、市場分析を効率化するように設計されています。各ボタンには高値・安値のトレンド分析、出来高、その他の主要な指標の解析といった特定の機能が割り当てられています。このツールは、最も必要なタイミングで正確なリアルタイムデータを提供します。この記事では、その機能についてさらに詳しく掘り下げていきましょう。

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト
経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。