MQL5言語を使ったMetaTrader 5の統合に関する記事

icon

トレーダーはしばしば革新的なアプローチを要する、興味深いチャレンジに出会います。このカテゴリは、価格データとトレーディング結果を評価し、分析し、処理するための、決して思いもしなかったソリューションを提供する記事を特集します。記事は様々な統合ソリューションについて書かれており、データベースとICQの結合、OpenCLの使用、そしてソーシャルネットワーク、DelphiとC#の使用を含んでいます。

特別に用意された数学的なニューラルなパッケージ、さらにはもっと多くのものをどのように使うかを知るために読み進んでください。作者になりMQL5.communityのメンバーと独自のアイデアを共有してください。

新しい記事を追加
最新 | ベスト
MQLプログラムのグラフィカルインターフェイスのマークアップツールとしてのMQL 第2部
MQLプログラムのグラフィカルインターフェイスのマークアップツールとしてのMQL 第2部

MQLプログラムのグラフィカルインターフェイスのマークアップツールとしてのMQL 第2部

本論文では、MQLプログラムのウィンドウインタフェースを記述するための新しい概念をMQLの構造体を用いて確認します。 MQLマークアップに基づいてGUIを自動的に作成することで、要素をキャッシュして動的に生成したり、イベントを処理するためのスタイルや新しいスキームを制御したりする関数が追加されます。 標準のコントロールライブラリの強化版が添付されています。
DelphiでDLLをMQL5向けに書くためのガイド
DelphiでDLLをMQL5向けに書くためのガイド

DelphiでDLLをMQL5向けに書くためのガイド

本稿は、人気のプログラム言語ObjectPascalを使用しDelphiプログラム環境でDLLモジュールの作成メカニズムを検証します。本稿で使用している資料は、まずは問題を抱えたプログラム初心者用に考えられでおります。外部DLLに接続することでMQL5プログラム言語に埋め込まれた境界を破ります。
テクニカルインディケータとデジタルフィルター
テクニカルインディケータとデジタルフィルター

テクニカルインディケータとデジタルフィルター

本稿ではデジタルフィルターとしてテクニカルインディケータを取り上げます。デジタルフィルターの処理原則と基本特性が説明されます。また、MetaTrader 5 ターミナルでフィルターカーネルを受け取る実用的な方法と記事 "Building a Spectrum Analyzer" で提案されている既製のスペクトル解析機能との統合について考察します。例として典型的デジタルフィルターのパルスとスペクトル特性を使用します。
preview
取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン

取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン

コンピュータービジョンを使用すると、価格チャートと指標の視覚的表現に関してニューラルネットワークを訓練できるようになります。この方法では、ニューラルネットワークにデジタルでフィードする必要がないため、テクニカル指標全体でより幅広い操作が可能になります。
ユニバーサルEA:保留注文とサポートヘッジ(その5)
ユニバーサルEA:保留注文とサポートヘッジ(その5)

ユニバーサルEA:保留注文とサポートヘッジ(その5)

この記事では、CStrategyの取引エンジンのさらなる詳細を扱います。多くの要望により、取引エンジンに保留中のサポート関数を追加しました。また、MT5の最新バージョンでは、ヘッジオプションを使用してアカウントをサポートしています。同じサポートがCStrategyに追加されています。この記事では、有効なヘッジオプションを持つアカウントのCStrategyと同様に、予約注文のアルゴリズムについて説明します。
ユニバーサルEA: シンボルプロパティへのアクセス (その 8)
ユニバーサルEA: シンボルプロパティへのアクセス (その 8)

ユニバーサルEA: シンボルプロパティへのアクセス (その 8)

このテーマの8番目のパートは、任意のトレーディングツールへアクセスする特殊なオブジェクト CSymbol クラスの説明をします。 EAで使用する場合、このクラスはEAのプログラミングを簡素化し、その関数を拡張することができ、シンボルプロパティのセットを提供します。
クロスプラットフォームEA: ストップ
クロスプラットフォームEA: ストップ

クロスプラットフォームEA: ストップ

この記事では、2つのプラットフォームMetaTrader4とMetaTrader5との互換性を確保するために、EAのストップの実装について説明します。
preview
ニューラルネットワークが簡単に(第9部):作業の文書化

ニューラルネットワークが簡単に(第9部):作業の文書化

長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。
トレードレポートとSMS通知の作成と発行
トレードレポートとSMS通知の作成と発行

トレードレポートとSMS通知の作成と発行

トレーダーはかならずしも何時間もトレーディング端末の前に座っていられるわけでも、またそうしたいわけでもありません。特に、トレーディングシステムが多かれ少なかれ形式化され自動でマーケット状況を特定できる場合にはそうです。本稿ではトレード結果レポートをHTMLファイルとして作成し、FTPを介してWWWサーバーにアップロードする方法について述べます。また、トレードイベント通知をSMSとして携帯電話に送信することみついても考察します。
preview
連続歩行順最適化(パート1):最適化レポートの使用

連続歩行順最適化(パート1):最適化レポートの使用

最初の記事では、最適化レポートを操作するためのツールキットの作成、ターミナルからのインポート、取得したデータのフィルタリングとソートに関する説明を行います。 MetaTrader5では最適化結果のダウンロードが可能ですが、今回の目的は最適化レポートに独自のデータを追加することです。
スタンダードライブラリーのクラスとグーグルチャートAPIを用いて情報ボードを生成する
スタンダードライブラリーのクラスとグーグルチャートAPIを用いて情報ボードを生成する

スタンダードライブラリーのクラスとグーグルチャートAPIを用いて情報ボードを生成する

MQL5 プログラミング言語は主に自動取引システムと複雑な技術的解析の道具の創造をターゲットとしている。. しかしこのことを別として、これはマーケットの状況の追跡に対する興味深いシステムの創造も可能にし、トレーダーとの相互のつながりを与える。この記事ではMQL5の標準ライブラリーの要素とこのような目的に到達するための実例を示すことにする。またチャート作成のためのグーグルチャートAPIの使用についても例を示す。
ユニバーサルEA:カスタムストラテジーと補助トレードクラス(その3)
ユニバーサルEA:カスタムストラテジーと補助トレードクラス(その3)

ユニバーサルEA:カスタムストラテジーと補助トレードクラス(その3)

この記事では、ストラテジーの取引エンジンのアルゴリズムを分析していきます。シリーズの3番目の部分は、このアプローチを使用して、特定の取引ストラテジーを開発する方法の詳細な分析があります。特別な注意が補助アルゴリズムに必要です - EAは、従来のインデクサーを使用して、システムとデータへのアクセスをログに記録します(Close[1]、Open[0]など)
preview
並列粒子群最適化

並列粒子群最適化

本稿では、粒子群アルゴリズムを使用した高速最適化の手法について説明しています。また、この手法のMQLでの実装を提示します。これは、エキスパートアドバイザー内のシングルスレッドモードとローカルテスターエージェントで実行されるアドオンとしての並列マルチスレッドモードの両方ですぐに使用できます。
HedgeTerminalパネルを利用して MetaTrader 5 で双方向トレードとポジションヘッジを行う - パート1
HedgeTerminalパネルを利用して MetaTrader 5 で双方向トレードとポジションヘッジを行う - パート1

HedgeTerminalパネルを利用して MetaTrader 5 で双方向トレードとポジションヘッジを行う - パート1

本稿ではポジションヘッジへの新しいアプローチについて述べ、本件に関する MetaTrader 4 および MetaTrader 5 のユーザー間のディベートに一線を画します。そのようなヘッジを信頼して行うアルゴリズムは解りやすい言葉で、またシンプルなグラフと図で説明されています。本稿は新しいパネルHedgeTerminalに特化して説明しています。これは MetaTrader 5 内で本質的に完全な機能を備えたトレードターミナルです。HedgeTerminalとそれによるトレードの仮想化でポジションは MetaTrader 4 と同じような方法で管理することができます。
preview
連続ウォークフォワード最適化(パート3):ロボットをオートオプティマイザに適応させる

連続ウォークフォワード最適化(パート3):ロボットをオートオプティマイザに適応させる

3番目であるこの記事は、前の 2 つの記事間のブリッジとして機能します。最初の記事で検討されている.dll との相互作用のメカニズムと、2 番目の記事で説明したレポートダウンロード用のオブジェクトについて説明します。 DLLからインポートし、トレードヒストリーを持つXMLファイルを形成するクラスのラッパ作成のプロセスを分析します。 このラッパとデータのやり取りするメソッドも検討します。
MetaTrader5 での MATLAB 2018 計算関数の使用
MetaTrader5 での MATLAB 2018 計算関数の使用

MetaTrader5 での MATLAB 2018 計算関数の使用

2015年にMATLAB パッケージがアップグレードされた後、DLL ライブラリを作成する最新のメソッドを検討する必要がありました。 この記事では、サンプルの予測インジケータを使用して、現代の64ビットバージョンのプラットフォームを使用して MetaTrader5 と MATLAB をリンクするメソッドを説明します。 MATLAB の接続シーケンス全体を考慮することにより、MQL5 開発者は速く高度な計算機能があるアプリケーションを作成し、«落とし穴»を回避することができます。
トレーディングモデルに基づくマルチエキスパートアドバイザーの作成
トレーディングモデルに基づくマルチエキスパートアドバイザーの作成

トレーディングモデルに基づくマルチエキスパートアドバイザーの作成

MQL5にてオブジェクト指向のアプローチを使用すると、マルチ通貨・マルチシステム・マルチタイムフレームのエキスパートアドバイザーの作成を大幅に単純化することができます。全てのタイムフレーム、全ての金融商品において、いくつものトレーディング戦略に基づいた取引をあなたのEAが行うことを想像してみてください。さらに、EAはテスターにて簡単にテストすることができ、すべての戦略において、稼働する資産管理システムがいくつもあります。
preview
連続ウォークフォワード最適化(パート4):最適化マネージャ(オートオプティマイザ)

連続ウォークフォワード最適化(パート4):最適化マネージャ(オートオプティマイザ)

この記事の主な目的は、アプリケーションとその機能を操作するメカニズムについて説明することです。 したがって、この記事は、アプリケーションの使用方法に関する説明書としても使うことができます。 アプリケーションの使用法においてありがちな落とし穴と詳細を扱っています。
C plus plus テンプレートの代用としての疑似テンプレート使用
C plus plus テンプレートの代用としての疑似テンプレート使用

C plus plus テンプレートの代用としての疑似テンプレート使用

本稿はテンプレートは使わないが、プログラムスタイルはテンプレートに合ったものを保持する方法について述べていきます。カスタムメソッドを使ってテンプレートを実装することをお伝えします。また、指定のテンプレートを基にしたコード作成用既製のスクリプトを添付しています。
ユニバーサルEA:イベントモデルと取引ストラテジープロトタイプ(パート2)
ユニバーサルEA:イベントモデルと取引ストラテジープロトタイプ(パート2)

ユニバーサルEA:イベントモデルと取引ストラテジープロトタイプ(パート2)

この記事は、ユニバーサルEAのシリーズです。このパートでは、データ処理に基づいて、オリジナルのイベント・モデルについて解説し、エンジンのストラテジーの基本クラスの構造を扱います。
ターミナル間のデータ交換にクラウドストレージサービスを使用
ターミナル間のデータ交換にクラウドストレージサービスを使用

ターミナル間のデータ交換にクラウドストレージサービスを使用

クラウド技術の普及が進んでいます。 今日では、有料と無料のストレージサービスから選択することができます。 トレードで使用することは可能でしょうか? 本稿では, クラウドストレージサービスを利用してターミナル間でのデータ交換を行う技術を提案します。
トレーダーの作業における統計的分布の役割
トレーダーの作業における統計的分布の役割

トレーダーの作業における統計的分布の役割

本稿は、理論的統計的分布に連携するクラスについて述べた拙著『MQL5 における投擲的可能性』の続編です。われわれには理論的基盤があるので、現実のデータ設定に進み、こ基盤を情報的に利用していきたいと思います。
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

この記事では、クロスプラットフォームのEAについて扱っています。主にクラス CExpertAdvisor と CExpertAdvisors は、この記事で説明した他のすべてのコンポーネントのコンテナとして機能します。
preview
連続ウォークフォワード最適化(パート5):自動オプティマイザプロジェクトの概要とGUIの作成

連続ウォークフォワード最適化(パート5):自動オプティマイザプロジェクトの概要とGUIの作成

この記事では、MetaTrader5 ターミナルでのウォークフォワード最適化の詳細を説明します。 以前の記事では、最適化レポートを生成およびフィルタリングする方法を検討し、最適化プロセスを担当するアプリケーションの内部構造の分析を開始しました。 自動オプティマイザは C# アプリケーションとして実装され、独自のグラフィカル インターフェイスを備えています。 5番目となるこの記事では、このグラフィカルインタフェースの作成に専念します。
preview
パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。
preview
トランスダクション・アクティブ機械学習におけるスロープブースト

トランスダクション・アクティブ機械学習におけるスロープブースト

本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
preview
Candlestick Trend Constraintモデルの構築(第6回):オールインワン統合

Candlestick Trend Constraintモデルの構築(第6回):オールインワン統合

一つの大きな課題は、異なる機能を持つ同じプログラムを、同じ通貨ペアに対して複数のチャートウィンドウで実行し、管理することです。この問題を解決するには、複数の機能を一つのメインプログラムに統合する方法を検討する必要があります。さらに、プログラムの設定を操作ログに出力する方法や、成功したシグナルのブロードキャストをチャートインターフェイス上に表示する方法についても解説します。連載が進むにつれ、この記事でさらに詳しい情報を提供していきます。
preview
MQL5の圏論(第14回):線形順序を持つ関手

MQL5の圏論(第14回):線形順序を持つ関手

この記事は、MQL5における圏論の実装に関する広範な連載の一部であり、関手について掘り下げます。関手のおかげで線形順序が集合にどのように写像できるかを検証します。一般的には何のつながりもないと見なされてしまうような2つのデータ集合について考えます。
ユニバーサルEA:グループでの取引とストラテジーのポートフォリオを管理する(その4)
ユニバーサルEA:グループでの取引とストラテジーのポートフォリオを管理する(その4)

ユニバーサルEA:グループでの取引とストラテジーのポートフォリオを管理する(その4)

CStrategyの取引エンジンについての一連の記事の最後のパートでは、XMLファイルからストラテジーをロードする方法を行います。複数の取引アルゴリズムの同時動作を考慮し、単一の実行可能モジュールからのEAを選択する簡単なパネルを提示し、その取引モードを管理します。
ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング
ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング

ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング

本稿パート1でご紹介した PHP ベースの Twitter の考え方を形にしましょう。の異なるパーツを SDSS 組み立てるのです。システムアーキテクチャのクライアント側において、HTTP を介してトレードシグナルを送信するために新しいMQL5 WebRequest() 関数に頼ります。
数式の計算(第1部)再帰下降パーサ
数式の計算(第1部)再帰下降パーサ

数式の計算(第1部)再帰下降パーサ

本稿では、数式の解析と計算の基本原則について説明します。事前に構築された構文木に基づいて、インタプリタモードと高速計算モードで動作する再帰下降パーサを実装します。
MQL5-RPC. MQL5からのリモートプロシージャコール:ウェブサービスアクセスと、利益のためのXML-RPC ATC アナライザー
MQL5-RPC. MQL5からのリモートプロシージャコール:ウェブサービスアクセスと、利益のためのXML-RPC ATC アナライザー

MQL5-RPC. MQL5からのリモートプロシージャコール:ウェブサービスアクセスと、利益のためのXML-RPC ATC アナライザー

この記事は、リモートプロシージャコールを可能にするMQL5-RPCフレームワークを紹介します。XML-RPCの基礎から始め、MQL5の実装、そして、二つの実例を紹介します。最初の例は、外部のウェブサービスを使用するというもので、二つ目は、XML-RPC ATC 2011 Analyzerサービスのクライアントの例です。もし、ATC 2011からの異なる統計の実装や分析方法に興味のある場合、この記事はうってつけだと思います。
数式の計算(第2部)Prattパーサーおよび操車場パーサー
数式の計算(第2部)Prattパーサーおよび操車場パーサー

数式の計算(第2部)Prattパーサーおよび操車場パーサー

この記事では、演算子の優先順位に基づいたパーサーを使用した数式の解析と評価の原則について検討します。Prattパーサーと操車場パーサー、バイトコードの生成とこのコードによる計算を実装し、式の関数として指標を使用する方法と、これらの指標に基づいてエキスパートアドバイザーで取引シグナルを設定する方法を確認します。
自己キャッシング指標の速度比較
自己キャッシング指標の速度比較

自己キャッシング指標の速度比較

本稿では、MQL5指標への古典的なアクセスと、代替のMQL4形式のアクセス法を比較します。指標へのMQL4形式のアクセスについては何種類かが考慮されます。MQL5コア内の指標ハンドルも考慮して分析されます。
MQL5 エキスパートアドバイザーから、GSMモデムを使用する
MQL5 エキスパートアドバイザーから、GSMモデムを使用する

MQL5 エキスパートアドバイザーから、GSMモデムを使用する

現在、トレーディングのアカウントを監視する手段がたくさんあります:モバイルターミナルはICQを用い、プッシュ通知を行います。しかし、すべてインターネットの接続を必要とします。この記事は、特に呼び出しやテキストメッセージはできるが、モバイルのインターネットを使用できないような時にトレーディングターミナルの情報を取得できるようになるエキスパートアドバイザーを作成するプロセスを紹介します。
市場分析のための実践的なデーターベースの活用
市場分析のための実践的なデーターベースの活用

市場分析のための実践的なデーターベースの活用

データを扱うことは、現代のソフトウェアのメインの業務となっています。これは、スタンドアロン系、ネットワーク系のアプリ双方において言えることです。この問題を解決するために、特別なソフトウェアが開発されました。それは、データベース管理システム(DBMS)です。コンピューター内ストレージや、その処理においてデータを整理し、構築します。トレーディングにおいて、多くの分析はデータベースを使用しません。しかし、ソリューションがより便利になる必要のある業務があります。この記事では、クライアントサーバー、ファイルサーバー構造の両方において、データベースからデータをロードし、保存できるインジケーターの例を紹介します。
preview
MQL5での行列およびベクトル演算

MQL5での行列およびベクトル演算

行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。
preview
MQL5でのAutoItの使用

MQL5でのAutoItの使用

簡単に説明すると、この記事では、MQL5をAutoItと統合することによってMetraTrader5ターミナルのスクリプトを作成します。その中で、ターミナルのユーザーインターフェイスを操作することによってさまざまなタスクを自動化する方法を説明し、AutoItXライブラリを使用するクラスも紹介します。
デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発
デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発

デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発

この記事では、CopyTicks() および CopyTicksRange() 関数を使用して、実際のボリュームに基づいた株価インジケータを開発するアルゴリズムを扱います。 このようなインジケータの開発については、リアルタイムでの操作とストラテジーテスターにおける細かい側面も説明されています。
preview
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択

高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択

本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。