
以 MQL5 实现 ARIMA 训练算法
在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。

如何利用 MQL5 创建自定义指标(Heiken Ashi)
在本文中,我们将学习如何根据我们的偏好利用 MQL5 创建自定义指标,在 MetaTrader 5 当中运用它来帮助我们读取图表,或在自动智能系统当中运用。

首次启动MetaTrader VPS:分步说明
使用EA交易或订阅信号的每个交易者几乎都会认识到,需要为自己的交易平台租用一个可靠的24/7全天候主机服务器。出于多种原因,我们建议使用MetaTrader VPS。您可以通过MQL5.community账户方便地支付服务费用和管理订阅。

在莫斯科交易所(MOEX)里使用破位挂单的自动兑换网格交易
本文探讨在莫斯科交易所(MOEX)里基于破位挂单的网格交易方法如何在 MQL5 智能系统中实现。 在市场上进行交易时,最简单的策略之一是设计“捕捉”市场价格的订单网格。

神经网络变得轻松(第三十七部分):分散关注度
在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

从自营公司那里吸取一些教训(第 1 部分)— 简介
在这篇介绍性文章中,我将讨论从自营交易公司实施的挑战规则中吸取的一些教训。 这对于初学者和那些努力在这个交易世界中站稳脚跟的人来说尤其重要。 后续文章会介绍代码实现。

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数
神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

如何将 MetaTrader 5 与 PostgreSQL 连接
本文讲述了将 MQL5 代码与 Postgres 数据库连接的四种方法,并提供了一个分步教程,指导如何使用 Windows 子系统 Linux (WSL) 为 REST API 设置一个开发环境。 所提供 API 的演示应用程序,配以插入数据并查询相应数据表的 MQL5 代码,以及消化此数据的演示智能系统。

MetaTrader 中的多机器人:从单图表中启动多个机器人
在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。

利用 MQL5 实现 Janus 因子
加里·安德森(Gary Anderson)基于他称之为Janus因子的理论,开发了一套市场分析方法。 该理论描述了一套可揭示趋势和评估市场风险的指标。 在本文中,我们将利用 mql5 实现这些工具。

MQL5 中的范畴论 (第 5 部分):均衡器
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

如何在 MQL5 中使用 ONNX 模型
ONNX(开放式神经网络交换)是一种开源的机器学习模型格式。 在本文中,我们将研究如何创建 CNN-LSTM 模型,来预测金融时间序列。 我们还将展示如何在 MQL5 智能系统中运用创建的 ONNX 模型。

种群优化算法:类电磁算法(EM - ElectroMagnetism)
本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路
您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。

基于画布的指标:为通道填充透明度
在本文中,我将介绍一种创建自定义指标的方法,该方法利用标准库中的类 CCanvas 来完成绘图,并可查看图表属性以便坐标转换。 我将着手处理特殊的指标,其需要用透明度填充两条线之间的区域。

学习如何基于斐波那契(Fibonacci)设计交易系统
在本文中,我们将继续如何基于最流行的技术指标创建交易系统的系列文章。 这次一个新的技术工具,即斐波那契(Fibonacci),我们将学习如何基于该技术指标设计交易系统。

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。

数据科学和机器学习(第 12 部分):自训练神经网络能否帮助您跑赢股市?
您是否厌倦了持续尝试预测股市? 您是否希望有一个水晶球来帮助您做出更明智的投资决策? 自训练神经网络可能是您一直在寻找的解决方案。 在本文中,我们将探讨这些强大的算法是否可以帮助您“乘风破浪”,并跑赢股市。 通过分析大量数据和识别形态,自训练神经网络通常可以做出比人类交易者更准确的预测。 发现如何使用这项尖端技术来最大化您的盈利,并制定更明智的投资决策。

神经网络实验(第 4 部分):模板
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。

神经网络变得轻松(第三十六部分):关系强化学习
在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。