MQL5 编程示例的文章

icon

访问海量文章以及代码实例集合,演示如何使用 MQL5 语言 为 MetaTrader 平台创建指标和交易机器人。源代码已附加在文章之中,因此您可以在 MetaEditor 中打开并运行它们,看看应用程序如何工作。

这些文章对那些刚开始探索自动交易的人,以及具有编程经验的职业交易员都极其有用。它们的特色不仅是例子,而且也蕴含着新的想法。

添加一个新的文章
最近 | 最佳
preview
适应性社会行为优化(ASBO):两阶段演变

适应性社会行为优化(ASBO):两阶段演变

我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。
preview
S&P 500交易策略在MQL5中的实现(适合初学者)

S&P 500交易策略在MQL5中的实现(适合初学者)

了解如何利用MQL5精准预测标普500指数,结合经典技术分析以增强稳定性,并将算法与经过时间验证的原则相结合,以获得稳健的市场洞察。
preview
MQL5 交易工具包(第 2 部分):扩展和实现仓位管理 EX5 库

MQL5 交易工具包(第 2 部分):扩展和实现仓位管理 EX5 库

了解如何在 MQL5 代码或项目中导入和使用 EX5 库。在这篇续文中,我们将通过向现有库中添加更多仓位管理功能并创建两个 EA 交易系统来扩展 EX5 库。第一个例子将使用可变指数动态平均(Variable Index Dynamic Average,VIDYA)技术指标来开发追踪止损交易策略 EA 交易,而第二个例子将利用交易面板来监控、开仓、平仓和修改仓位。这两个例子将演示如何使用和实现升级后的 EX5 仓位管理库。
preview
神经网络变得简单(第 91 部分):频域预测(FreDF)

神经网络变得简单(第 91 部分):频域预测(FreDF)

我们继续探索时间序列在频域中的分析和预测。在本文中,我们将领略一种在频域中预测数据的新方法,它可被加到我们之前研究过的众多算法当中。
preview
重塑经典策略(第三部分):预测新高与新低

重塑经典策略(第三部分):预测新高与新低

在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。
preview
如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

聪明资金概念(结构突破)与 RSI 指标相结合,可根据市场结构做出明智的自动交易决策。
preview
通过推送通知监控交易——一个MetaTrader 5服务的示例

通过推送通知监控交易——一个MetaTrader 5服务的示例

在本文中,我们将探讨如何创建一个服务应用程序,用于向智能手机发送关于交易结果的通知。我们将学习如何处理标准库对象列表,以便根据所需属性组织对象的选择。
preview
特征向量和特征值:MetaTrader 5 中的探索性数据分析

特征向量和特征值:MetaTrader 5 中的探索性数据分析

在这篇文章中,我们将探索特征向量和特征值在探索性数据分析中的不同应用方式,以揭示数据中的独特关系。
preview
开发回放系统(第 56 部分):调整模块

开发回放系统(第 56 部分):调整模块

虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。
preview
自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

本文深入探讨了生物体的社会行为及其对新型数学模型——自适应社会行为优化(ASBO)创建的影响,为我们呈现了一个引人入胜的世界。我们将研究生物社会中观察到的领导、近邻和合作原则如何激发创新优化算法的开发。
preview
开发回放系统(第 55 部分):控制模块

开发回放系统(第 55 部分):控制模块

在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。
preview
您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。
preview
开发回放系统(第 54 部分):第一个模块的诞生

开发回放系统(第 54 部分):第一个模块的诞生

在本文中,我们将探讨如何将多个真正功能模块中的第一个组合在一起,用于回放/模拟器系统,这些模块也将用于其他用途。我们现在说的是鼠标模块。
preview
化学反应优化 (CRO) 算法(第二部分):汇编和结果

化学反应优化 (CRO) 算法(第二部分):汇编和结果

在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。
preview
人工电场算法(AEFA)

人工电场算法(AEFA)

本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。
preview
您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

当经由向导组装一款智能系统时,默认情况下,跨多币种交易不可用。我们研究了 2 种可能采取的技巧,可令交易者在同一时间据多个品种测试他们的思路。
preview
开发回放系统(第 53 部分):事情变得复杂(五)

开发回放系统(第 53 部分):事情变得复杂(五)

在本文中,我们将介绍一个很少有人了解的重要话题:定制事件。危险。这些要素的优缺点。对于希望成为 MQL5 或其他语言专业程序员的人来说,本主题至关重要。在此,我们将重点介绍 MQL5 和 MetaTrader 5。
preview
MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库

MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库

了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。
preview
情绪分析与深度学习在交易策略中的应用以及使用Python进行回测

情绪分析与深度学习在交易策略中的应用以及使用Python进行回测

在本文中,我们将介绍如何使用Python中的情绪分析和ONNX模型,并将它们应用于EA中。使用一个脚本运行TensorFlow训练的ONNX模型,以进行深度学习预测;而通过另一个脚本获取新闻标题,并使用人工智能技术量化情绪。
preview
开发回放系统(第 52 部分):事情变得复杂(四)

开发回放系统(第 52 部分):事情变得复杂(四)

在本文中,我们将修改鼠标指针,以实现与控制指标的交互,确保可靠、稳定地运行。
preview
跨邻域搜索(ANS)

跨邻域搜索(ANS)

本文揭示了跨邻域搜索(ANS)算法的潜力,作为重要的一步,旨在开发灵活且智能的优化方法,使其能够在搜索空间中考虑问题的具体特性和环境的动态变化。
preview
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。
preview
开发回放系统(第 51 部分):事情变得复杂(三)

开发回放系统(第 51 部分):事情变得复杂(三)

在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
开发回放系统(第 50 部分):事情变得复杂 (二)

开发回放系统(第 50 部分):事情变得复杂 (二)

我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
preview
使用Python和MQL5进行交易策略的自动参数优化

使用Python和MQL5进行交易策略的自动参数优化

有多种用于交易策略和参数自我优化的算法。这些算法基于历史和当前市场数据自动改进交易策略。在本文中,我们将通过Python和MQL5的示例来探讨其中一种算法。
preview
让新闻交易轻松上手(第二部分):风险管理

让新闻交易轻松上手(第二部分):风险管理

在本文,我们将把继承引入到我们之前的代码和新代码中。我们将引入一种新的数据库设计以提高效率。此外,还将创建一个风险管理类来处理容量计算。
preview
开发回放系统(第 49 部分):事情变得复杂 (一)

开发回放系统(第 49 部分):事情变得复杂 (一)

在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
preview
获取市场优势的秘诀(第二部分):预测技术指标

获取市场优势的秘诀(第二部分):预测技术指标

你知道吗?与预测交易标的的基础价格相比,我们预测某些技术指标时能获得更高的准确性。加入我们,一起探索如何利用这一想法来制定更好的交易策略。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。
preview
如何不通过翻找历史交易记录直接在图表上查看交易情况

如何不通过翻找历史交易记录直接在图表上查看交易情况

在本文中,我们将创建一个简单的工具,通过按键导航方式方便地直接在图表上查看持仓和交易。这将使交易者能够直观地检查每笔交易,并当场获取有关交易结果的所有信息。
preview
开发回放系统(第 47 部分):Chart Trade 项目(六)

开发回放系统(第 47 部分):Chart Trade 项目(六)

最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
preview
最负盛名的人工协作搜索算法的改进版本(AXSm)

最负盛名的人工协作搜索算法的改进版本(AXSm)

在这里,我们将探讨 ACS 算法的演变:三种修改旨在改善收敛特性和算法效率。对最领先的优化算法之一进行修订改版。从数据矩阵修改到种群形成的革命性方法。
preview
人工协作搜索算法 (ACS)

人工协作搜索算法 (ACS)

人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。
preview
开发回放系统(第 46 部分):Chart Trade 项目(五)

开发回放系统(第 46 部分):Chart Trade 项目(五)

厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
preview
比尔·威廉姆斯策略(或结合其他指标和预测)

比尔·威廉姆斯策略(或结合其他指标和预测)

在这篇文章中,我们将探讨比尔·威廉姆斯的一个著名策略,对其进行讨论,并尝试通过其他指标和预测来改进这一策略。
preview
理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

学习面向对象的编程范式,及其在 MQL5 代码中的应用。这是第二篇文章,更深入地讲解面向对象编程的规范,并通过一个实际示例提供上手经验。您将学习如何运用 EMA 指标,和烛条价格数据,将我们早期开发的过程化价格行为智能系统转换为面向对象的代码。
preview
密码锁算法(CLA)

密码锁算法(CLA)

在本文中,我们将重新考虑密码锁,将它们从安全机制转变为解决复杂优化问题的工具。让我们探索密码锁的世界,不再将其视为简单的安全装置,而是作为优化问题新方法的灵感来源。我们将创建一整群“锁”,其中每把锁都代表问题的一个独特解决方案。然后,我们将开发一种算法来“破解”这些锁,并从机器学习到交易系统开发等多个领域中找到最优解。
preview
重构经典策略:原油

重构经典策略:原油

在本文中,我们重新审视一种经典的原油交易策略,旨在通过利用监督机器学习算法来对其进行优化。我们将构建一个最小二乘模型,该模型基于布伦特原油(Brent)和西德克萨斯中质原油(WTI)之间的价差来预测未来布伦特原油价格。我们的目标是找到一个能够预测布伦特原油未来价格变化的领先指标。
preview
如何开发各种类型的追踪止损并将其加入到EA中

如何开发各种类型的追踪止损并将其加入到EA中

在本文中,我们将探讨用于便捷创建各种追踪止损的类,并学习如何将追踪止损加入到EA中。