Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры
Мы уже несколько продвинулись в разработке мультивалютного советника с несколькими параллельно работающими стратегиями. С учетом накопленного опыта проведем ревизию архитектуры нашего решения и попробуем ее улучшить, пока не ушли слишком далеко вперед.
Разработка системы репликации (Часть 28): Проект советника — класс C_Mouse (II)
Когда начали создаваться первые системы, способные что-то считать, всё потребовало вмешательства инженеров, обладающих обширными знаниями о том, что проектируется. Мы говорим о рассвете компьютерной техники, о времени, когда не было даже терминалов, позволяющих что-либо программировать. По мере развития и роста интереса к тому, чтобы большее число людей могли создавать что-либо, появлялись новые идеи и методы программирования этих машин, которые раньше сводились к изменению положения соединителей. Именно тогда появились первые терминалы.
Теория категорий в MQL5 (Часть 23): Другой взгляд на двойную экспоненциальную скользящую среднюю
В этой статье мы продолжаем рассматривать популярные торговые индикаторы под новым углом. Мы собираемся обрабатывать горизонтальную композицию естественных преобразований. Лучшим индикатором для этого является двойная экспоненциальная скользящая средняя (Double Exponential Moving Average, DEMA).
Разработка системы репликации (Часть 27): Проект советника — класс C_Mouse (I)
В этой статье мы воплотим в жизнь класс C_Mouse. Он обеспечивает возможности программирования на самом высоком уровне. Однако разговоры о высокоуровневых или низкоуровневых языках программирования не связаны с включением в код нецензурных слов или жаргона. Всё наоборот. Когда мы говорим о высокоуровневом или низкоуровневом программировании, мы имеем в виду, насколько легко или сложно понять код другим программистам.
Разработка системы репликации (Часть 26): Проект советника — Класс C_Terminal
Мы уже можем начать создавать советника для использования в репликации/моделировании. Однако нам нужно нечто усовершенствованное, а не какое-то случайное решение. Несмотря на это, нас не должна пугать первоначальная сложность. Очень важно начать с чего-то, иначе в конечном итоге мы придем к тому, что размышляем о сложности задачи, даже не пытаясь ее преодолеть. Суть программирования именно в этом: преодолеть препятствия посредством изучения, тестирования и обширных исследований.
Разработка системы репликации - Моделирование рынка (Часть 25): Подготовка к следующему этапу
В этой статье мы завершаем первый этап разработки системы репликации и моделирования. Дорогой читатель, этим достижением я подтверждаю, что система достигла продвинутого уровня, открывая путь для внедрения новой функциональности. Цель состоит в том, чтобы обогатить систему еще больше, превратив ее в мощный инструмент для исследований и развития анализа рынка.
Разработка системы репликации - Моделирование рынка (Часть 24): FOREX (V)
Сегодня мы снимем ограничение, которое препятствовало выполнению моделирований, основанных на построении LAST, и введем новую точку входа специально для этого типа моделирования. Обратите внимание на то, что весь механизм работы будет основан на принципах валютного рынка. Основное различие в данной процедуре заключается в разделении моделирований BID и LAST. Однако важно отметить, что методология, используемая при рандомизации времени и его корректировке для совместимости с классом C_Replay, остается идентичной в обоих видах моделирования. Это хорошо, поскольку изменения в одном режиме приводят к автоматическим улучшениям в другом, особенно если это касается обработки времени между тиками.
Нейросети — это просто (Часть 76): Изучение разнообразных режимов взаимодействия (Multi-future Transformer)
В данной статье мы продолжаем тему прогнозирования предстоящего ценового движения. И предлагаю Вам познакомиться с архитектурой Multi-future Transformer. Основная идея которого заключается в разложении мультимодального распределение будущего на несколько унимодальных распределений, что позволяет эффективно моделировать разнообразные модели взаимодействия между агентами на сцене.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 2): Сигналы индикатора - мультитаймфреймовый Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. На этот раз мы будем использовать только один индикатор, а именно Parabolic SAR или iSAR на нескольких таймфреймах, начиная с PERIOD_M15 и заканчивая PERIOD_D1.
Теория категорий в MQL5 (Часть 22): Другой взгляд на скользящие средние
В этой статье мы попытаемся упростить описание концепций, рассматриваемых в этой серии, остановившись только на одном индикаторе - наиболее распространенном и, вероятно, самом легком для понимания. Речь идет о скользящей средней. Также мы рассмотрим значение и возможные применения вертикальных естественных преобразований.
Разрабатываем мультивалютный советник (Часть 2): Переход к виртуальным позициям торговых стратегий
Продолжим разработку мультивалютного советника с несколькими параллельно работающими стратегиями. Попробуем перенести всю работу, связанную с открытием рыночных позиций с уровня стратегий на уровень эксперта, управляющего стратегиями. Сами стратегии будут торговать только виртуально, не открывая рыночных позиций.
Нейросети — это просто (Часть 75): Повышение производительности моделей прогнозирования траекторий
Создаваемые нами модели становятся все больше и сложнее. Вместе с тем растут затраты не только на их обучение, но и эксплуатацию. При этом довольно часто мы сталкиваемся с ситуацией, когда затраты времени на принятие решения бывают критичны. И в этой связи мы обращаем свое внимание на методы оптимизации производительности моделей без потери качества.
Теория категорий в MQL5 (Часть 21): Естественные преобразования с помощью LDA
Эта статья, 21-я в нашей серии, продолжает рассмотрение естественных преобразований и того, как их можно реализовать с помощью линейного дискриминантного анализа. Как и в предыдущей статье, реализация представлена в формате класса сигнала.
Причинно-следственный вывод в задачах классификации временных рядов
В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.
Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий
Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.
Теория категорий в MQL5 (Часть 20): Самовнимание и трансформер
Немного отвлечемся от наших постоянных тем и рассмотрим часть алгоритма ChatGPT. Есть ли у него какие-то сходства или понятия, заимствованные из естественных преобразований? Попытаемся ответить на эти и другие вопросы, используя наш код в формате класса сигнала.
Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения
Мы продолжаем рассмотрение алгоритмов обучения моделей прогнозирования траекторий. И в данной статье я предлагаю вам познакомиться с методом под названием “AutoBots”.
Теория категорий в MQL5 (Часть 19): Индукция квадрата естественности
Мы продолжаем рассмотрение естественных преобразований, рассматривая квадратичную индукцию естественности. Небольшие ограничения на реализацию мультивалютности для экспертов, собранных с помощью мастера MQL5, означают, что мы демонстрируем свои возможности по классификации данных с помощью скрипта. В качестве основных областей применения рассматриваются классификация изменений цен и, соответственно, их прогнозирование.
Выставление ордеров в MQL5
При создании любой торговой системы есть задача, которую необходимо эффективно решить. Эта задача заключается в выставлении ордеров либо в их автоматической обработке торговой системой. В статье рассмотрено создание торговой системы с точки зрения эффективного выставления ордеров.
Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума
Качество прогнозирование будущих состояний играет важную роль в метода Goal-Conditioned Predictive Coding, с которым мы познакомились в предыдущей статье. В данной статье я хочу познакомить Вас с алгоритмом, способным значительно повысить качество прогнозирования в стохастических средах, к которым можно отнести и финансовые рынки.
Создаем алгоритм маркет-мейкинга на MQL5
Как работают маркет-мейкеры на рынке? Рассмотрим этот вопрос и создадим примитивный алгоритм маркет-мейкинга.
Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)
В предыдущих работах мы познакомились с методом Decision Transformer и несколькими производными от него алгоритмами. Мы экспериментировали с различными методами постановки цели. В процессе экспериментов мы работали с различными способами постановки целей, однако изучение моделью уже пройденной траектории всегда оставалось вне нашего внимания. В данной статье я хочу познакомить Вас с методом, который заполняет этот пробел.
Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)
В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.
Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)
В оффлайн обучении мы используем фиксированный набор данных, что ограничивает покрытие разнообразия окружающей среды. В процессе обучения наш Агент может генерировать действия вне этого набора. При отсутствии обратной связи от окружающей среды корректность оценок таких действий вызывает вопросы. Поддержание политики Агента в пределах обучающей выборки становится важным аспектом для обеспечения надежности обучения. Об этом мы и поговорим в данной статье.
Теория категорий в MQL5 (Часть 18): Квадрат естественности
Статья продолжает серию о теории категорий, представляя естественные преобразования, которые являются ключевым элементом теории. Мы рассмотрим сложное на первый взгляд определение, затем углубимся в примеры и способы применения преобразований в прогнозировании волатильности.
Теория категорий в MQL5 (Часть 17): Функторы и моноиды
Это последняя статья серии, посвященная функторам. В ней мы вновь рассматриваем моноиды как категорию. Моноиды, которые мы уже представили в этой серии, используются здесь для помощи в определении размера позиции вместе с многослойными перцептронами.
Нейросети — это просто (Часть 68): Офлайн оптимизация политик на основе предпочтений
С первых статей, посвященных обучению с подкреплением, мы так или иначе затрагиваем 2 проблемы: исследование окружающей среды и определение функции вознаграждения. Последние статьи были посвящены проблеме исследования в офлайн обучении. В данной статье я хочу Вас познакомить с алгоритмом, авторы которого полностью отказались от функции вознаграждения.
Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач
В данной статье мы продолжим разговор о методах сбора данных в обучающую выборку. Очевидно, что в процессе обучения необходимо постоянное взаимодействие с окружающей средой. Но ситуации бывают разные.
Количественный анализ на MQL5: реализуем перспективный алгоритм
Разбираем вопрос, что такое количественный анализ, как его применяют крупные игроки, создадим один из алгоритмов количественного анализа на языке MQL5.
Тестируем информативность разных типов скользящих средних
Мы все знаем важность скользящей средней для многих трейдеров. Существуют разные типы скользящих средних, которые могут быть полезны в торговле. Мы рассмотрим их и проведем простое сравнение, чтобы увидеть, какой из них может показать лучшие результаты.
Теория категорий в MQL5 (Часть 16): Функторы с многослойными перцептронами
Мы продолжаем рассматривать функторы и то, как их можно реализовать с помощью искусственных нейронных сетей. Мы временно оставим подход, который включал в себя прогнозирование волатильности, и попытаемся реализовать собственный класс сигналов для установки сигналов входа и выхода из позиции.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 1): Сигналы на основе ADX в сочетании с Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами и т. д.) более чем одной парой символов с одного графика.
Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении
Обучение моделей в офлайн режиме осуществляется на данных ранее подготовленной обучающей выборки. Это дает нам ряд преимуществ, но при этом информация об окружающей среде сильно сжимается до размеров обучающей выборки. Что, в свою очередь, ограничивает возможности исследования. В данной статье хочу предложить познакомиться с методом, позволяющем наполнить обучающую выборку максимально разнообразными данными.
Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть III): Простой перемещаемый торговый интерфейс
В этой серии статей мы исследуем интеграцию интерактивных графических интерфейсов в перемещаемые торговые панели на MQL5. В третьей части мы используем наработки из предыдущих частей, чтобы превратить статические торговые панели в динамические.
Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)
В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.
Разработка системы репликации - Моделирование рынка (Часть 23): ФОРЕКС (IV)
Теперь создание происходит в той же точке, где мы преобразовывали тики в бары. Таким образом, если в процессе преобразования что-то пойдет не так, мы сразу же заметим ошибку. Это связано с тем, что тот же код, который размещает на графике 1-минутные бары при быстрой перемотке, также используется для системы позиционирования и для размещения баров при обычной перемотке. Другими словами, код, который отвечает за эту задачу, больше нигде не дублируется. Таким образом, мы получаем гораздо более совершенную систему как для поддержания, так и для улучшения.
Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)
Хотя это уже третья статья об этом, я должен объяснить для тех, кто еще не понял разницу между фондовым рынком и валютным рынком (ФОРЕКС): большая разница заключается в том, что в ФОРЕКС не существует, точнее, нам не дают информацию о некоторых моментах, которые действительно происходили в ходе торговли.
Разработка системы репликации - Моделирование рынка (Часть 21): ФОРЕКС (II)
Мы продолжим строить систему для работы на рынке ФОРЕКС. Поэтому для того, чтобы решить эту проблему необходимо сначала объявить загрузку тиков до загрузки предыдущих баров. Это решает проблему, но в то же время заставляет пользователя следовать некой структуре в конфигурационном файле, которая, лично для меня, не имеет особого смысла. Причина в том, что, разработав программу, которая отвечает за анализ и выполнение того, что находится в конфигурационном файле, мы можем позволить пользователю объявлять нужные ему элементы в любом порядке.
Кросс-валидация и основы причинно-следственного вывода в моделях CatBoost, экспорт в ONNX формат
В данной статье предложен авторский способ создания ботов с использованием машинного обучения.
Торговая техника RSI Deep Three Move
В статье представлена техника торговли RSI Deep Three Move в MetaTrader 5. Статья основана на новой серии исследований, демонстрирующих несколько торговых методов, основанных на RSI - техническом индикаторе для измерения силы и импульса ценных бумаг, включая акции, валюты и товары.