Статьи с примерами программирования индикаторов на языке MQL5

icon

Технические индикаторы являются самыми простыми и самыми полезными инструментами для проведения анализа ценовых графиков. В этом разделе вы найдете обучающие статьи, которые шаг за шагом помогут вам в изучении языка MQL5, вы сможете повторить как классические индикаторы технического анализа, так и научиться создавать свои собственные.

В статьях подробно объясняются приложенные исходные коды, скачивайте их в редактор MetaEditor и программируйте вместе с автором в процессе чтения.

Новая статья
последние | лучшие
preview
Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

В статье рассматриваются основные методы обработки файлов MQL5, ведение журналов торговли, обработка CSV-файлов и интеграция внешних данных. Статья содержит как теорию, так и практическое руководство по реализации. Читатели научатся шаг за шагом создавать собственный класс импортера CSV, получив практические навыки для реальных приложений.
preview
Создаем индикатор канал Кельтнера с помощью пользовательской графики Canvas на MQL5

Создаем индикатор канал Кельтнера с помощью пользовательской графики Canvas на MQL5

В настоящей статье мы создаем индикатор канал Кельтнера с помощью пользовательской графики Canvas на MQL5. Мы подробно описываем интеграцию скользящих средних, расчеты ATR, а также улучшенную визуализацию графиков. Мы также расскажем о тестировании на истории, чтобы оценить эффективность индикатора и получить практическую информацию о трейдинге.
preview
Сингулярный спектральный анализ на MQL5

Сингулярный спектральный анализ на MQL5

Данная статья предназначена в качестве руководства для тех, кто не знаком с концепцией сингулярного спектрального анализа и хочет получить достаточно знаний, чтобы иметь возможность применять встроенные инструменты, доступные на MQL5.
preview
Прогнозирование условного распределения с помощью MLP

Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.