取引における様々な移動平均の比較

19 12月 2017, 13:49
Aleksey Zinovik
0
1 925

目次

はじめに

移動平均(MA)は、外国為替市場で最も人気のあるテクニカル指標の1つです。ここでの目的は、市場に出入りする均等な条件の下で、様々なMAを検討し、取引内でそれらを比較することです。

移動平均、適応移動平均、二重指数移動平均、フラクタル適応移動平均、三重指数移動平均、可変インデックス動的平均、およびNick Rypock移動平均の7種類の移動平均を考えてみましょう。

移動平均の種類

このセクションには、関連する移動平均を計算するための簡単な説明と数式が含まれています。

移動平均テクニカル指標

移動平均は、最も広く普及しているテクニカル指標の1つで、一定期間の銘柄価格の平均値を表します。MA指標には異なる変種が存在します。

  • 単純移動平均(SMA)
  • 指数移動平均(EMA)
  • 平滑移動平均(SMMA)
  • 線形加重移動平均(LWMA)

移動平均指標の各変種の計算式を以下に示します。

移動平均指標の変種 計算式 コメント
単純移動平均(SMA) SMA
  • nは単位期間の数です(たとえば、M15の時間枠を持つチャートでn=6の場合、指標は直前の1時間について計算されます)。
  • PRICEは現在価格値で、指標設定では、高値、安値、始値、終値、中間値((高+安)/2)、典型値((高+安+終)/3)、加重終値 ((高+安+終+終)/4) 、または以前の指標のデータを選択できます。
指数移動平均(EMA) EMA
  • EMA(i-1)は1つ前の値です。
  • Fは平滑化係数(価格値使用のシェア)です。係数Fは0から1までの範囲内で、例えば F=2/(n+1)のようにランダムに選択されます。ここで、nは単位期間数です。
  • PRICEは現在価格値です。
平滑移動平均(SMMA) SMMA
  • SMMA(i-1)は1つ前の値です。
  • nは単位期間数です。
  • PRICEは現在価格値です。
線形加重移動平均(LWMA) LWMA
  • PRICEは現在価格値です。
  • nは単位期間数です。

移動平均指標の異なる変種の価格チャートでの表示を検討してみましょう。図1は、12月の移動平均指標の変種を、終値で計算して示しています。

移動平均指標

図1 移動平均指標の変種

図が示すように、単純移動平均はフラットでわずかに変動し、誤った取引シグナルをもたらす可能性があります。平滑移動平均は、その名前からわかるように、よりスムーズに見えます。指数移動平均および線形加重移動平均は、フラットでも同様に動作します。線形加重移動平均はSMMAやEMAとは異なり、以前の値には依存しないので、トレンドがある時は他のラインよりも価格に近くなります。

指数移動平均(EMA) に基づくテクニカル指標

指数移動平均(EMA)は、他の多くのテクニカル指標の基礎となります。

指標
説明
計算式
計算式の説明

適応移動平均(AMA)

ノイズに対する感度の低いMAです。他の移動平均と比較すると、この指標では動向の反転と変化を判断する際の遅れが最小限に抑えられます。価格スパイクでは、それは強い変動をもたらさないので、誤った取引シグナルを呼び出すことはありません。 AMA指標計算
  • AMA(i-1) - 1つ前の指標値
  • Price(i) - 現在価格値
  • SSC(i) - 平滑化係数

二重指数移動平均

価格や他の指標値を平滑にするために使われます。 

主な利点は、価格がジグザグ様式で動いている時に偽のシグナルがないことです。強い動向の期間中にポジションを維持し、通常のEMAと比較してシグナルの遅れを減少させます。

DEMA指標計算


  • EMA(Price, n, i) - Price価格とn期間でのEMA現在値
  • EMA2(Price, n, i) = EMA(EMA(Price, n, i), n, i) - Priceとn期間の二重EMA

三重指数移動平均

一重、二重および三重指数MAを合成したものです。全体的な遅れは、それらのMA個別のものに対してにはるかに少ないです。

価格チャートと他の指標値を平滑化するために、従来の移動平均の代わりに適用されます。 

TEMA指標計算
  • EMA(Price, n, i) - Price価格とn期間でのEMA現在値
  • EMA2(Price, n, i) = EMA(EMA(Price, n, i), n, i) - Priceとn期間の二重EMA
  • EMA3(Price, n, i)=EMA(EMA2(Price, n, i), n, i) - Price価格とn期間の三重EMA

フラクタル適応移動平均

平滑化係数は、現在の価格系列のフラクタル次元に基づいて計算されます。指標の優位性は、強い動向を辿り、保合期間中に大幅に減速することです。

FRAMA指標計算

  • Price(i) - 現在価格値
  • A(i) - 現在の指数平滑化係数

可変インデックス動的平均

これは平均化期間が動的に変化し、市場のボラティリティに依存するEMAです。 

市場のボラティリティはChandeモメンタムオシレータ(CMO)によって測定され、一定期間(CMO期間)の正と負の増分の合計の比率を測定します。CMO値は、EMA平滑化係数の係数です。従って、指標では、CMOオシレータ周期とEMA平滑化期間の2つのパラメータが設定されます。

VIDYA指標計算
  • F=2/(n+1) - 平滑化係数、n - 単位期間数
  • ABS - 変数の絶対値を計算する数学的関数
  • VIDYA(i-1) - 1つ前の指標値
  • CMO(i) - CMOオシレータ値

Nick Rypock移動平均

この指標は普通のMetaTrader 5ディストリビューションの一部ではありません。その主な利点は、フラットでほとんど変動がないことです。 それは厳密に動向を辿ります。 

NRMA指標計算

  • NRMA(i-1) - 1つ前の指標値
  • Price(i) - 現在価格値
  • F=2/(n+1) - 平滑化係数、n - 単位期間数

    NRratio - 平滑化係数の比

通常のEMAとの指標の差

上記の指標を通常のEMAと比較してみましょう。図2は以下を示します。

  • 適応移動平均(期間 - 12、高速EMA - 2、低速EMA - 30、シフト - 0)
  • 二重指数移動平均(期間 - 12、シフト - 0)
  • フラクタル適応移動平均(期間 - 12、シフト - 0)
  • 指数移動平均(期間 - 12、シフト - 0)
  • 三重指数移動平均(期間 - 12、シフト - 0)
  • 可変インデックス動的平均(CMO期間 - 12、EMA期間 - 12、シフト - 0)
  • Nick Rypock移動平均(平均方法 - SMA、平滑化の深さ-3、平滑化パラメータ-15(SMAには未使用)、Kf-1、Fast-12、Sharp-2、垂直および水平シフト-0)

すべての指標は終値を基準にしています。

AMA、DEMA、TEMA、FRAMA、VIDYA、NRMA、EMA

図2 指数移動平均(EMA)に基づいた指標の比較

図2に示すように、DEMAとTEMAは通常のEMAと比較して、より正確に価格の動きに従います。 しかし、フラットでは変動し、偽の取引シグナルを与える可能性があります。残りの指標(FRAMA、AMA、VIDYA、NRMA)はフラットではほとんど変動せず、小規模な価格変動には反応しません。トレンドでは、ほとんどすべての指標が同じように振る舞い、TEMAとFRAMAはトレンド方向の変化に他の指標より速く反応しました。

様々な移動平均の比較

上記の考慮されたテクニカル指標の取引戦略と市場への出入りの均等条件を比較してみましょう。

取引戦略仕様

指標をテストするために、市場への出入りの明らかな条件を備えた単純な戦略が選択されました。

市場エントリの条件 

  • 予備的な買いシグナル:指標線が強気ローソク足の実体を横切る。その後、指標の現在値と以前の値との差が指定された[Growth factor]パラメータ(指標の伸び)よりも大きい場合に買い取引を始める。
  • 予備的な売りシグナル:指標線が弱気ローソク足の実体を横切る。その後、指標の現在値と以前の値との差が、指定された[Growth factor]パラメータ(指標の下降)よりも大きい場合に売り取引を始める。

市場江グジットの条件

  • TakeProfitまたはStopLossレベルに達した後
  • 買い取引が開かれ、指標線が弱気ローソク足の実体を越えたとき
  • 買い取引が開かれ、指標線が強気ローソク足の実体を越えたとき

図3と図4はそのような戦略での取引例を示します。

買う

図3 買い取引の例

売る

図4 売り取引の例

MetaTrader 5ターミナルナビゲータにある移動平均エキスパートアドバイザーでも同様の取引戦略が実現しています。

エキスパートアドバイザーの作成

上記の特定の戦略での取引のためのエキスパートアドバイザーを作成しましょう。MA(単純、指数関数、平滑化、直線加重法)、DEMA、TEMA、FRAMA、AMA、VIDYA、NRMAテクニカル指標の1つを選択する機能が実装されます。選択した指標がチャートに描画されます。また、指標入力パラメータ、TakeProfitとStopLossのサイズ、取引のためのロットのサイズ、指標成長係数(成長因子)の値を指定することができます。

各ティックの代わりに新しいバーで市場への出入りの条件を確認します。最初にポジションの利用可能性が確認されます(この目的のために、SelectPosition関数がエキスパートアドバイザーに提供されます)。そのようなポジションがない場合、エントリ条件(CheckForOpen関数)を確認し、可能であればエグジット条件(CheckForClose関数)を確認します。

本稿には完全なエキスパートアドバイザーコードが添付されています(MultiMovingAverageExpert.mq5ファイル)。市場への出入りの条件を実現することだけを考えてみましょう。入力条件は、CheckForOpen関数で次のように確認されます。

   if(rt[0].open>ma[0] && rt[0].close<ma[0])               // 弱気ローソク足実体を交差したかの確認
     {
      if(BuyCross)
         BuyCross=false;                                   // 買いの前提条件を削除する(それ以前にラインが強気ローソク足を交差した場合)
      SellCross=true;                                      // 売りの前提条件を設定する
     }
   else
   if(rt[0].open<ma[0] && rt[0].close>ma[0])               // 強気ローソク足実体を交差したかの確認
     {
      if(SellCross)
         SellCross=false;                                 // 売りの前提条件を削除する(それ以前にラインが弱気ローソク足を交差した場合)
      BuyCross=true;                                      // 買いの前提条件を設定する
     }
   if(SellCross && ma[0]>ma[1] && ma[0]-ma[1]>GFactor)
     {
      signal=ORDER_TYPE_SELL;                             // 指標が下降すると売り条件が発生する
      SellCross=false;                                    // 売り取引前提条件を削除する
     }
   else
   if(BuyCross && ma[1]>ma[0] && ma[1]-ma[0]>GFactor)
     {
      signal=ORDER_TYPE_BUY;                             // 指標が成長すると買い条件が発生する
      BuyCross=false;                                    // 買い取引前提条件を削除する
     }

  • Arrayrt[]には価格履歴が保存されます。
  • Array ma[]には指標値が保存されます。
  • rt[0].close、rt[0].openは1つ前の終値と始値です。
  • ma[0]は1つ前の指標値です。
  • ma[1]は現在の指標値です。
  • GFactorは指標の伸びの係数です。
  • 変数シグナルが、売買要求を形成するためにさらに使用されます。

エグジット条件は下記のようにCheckForClose関数で確認されます。

   bool signal=false;
   long type=PositionGetInteger(POSITION_TYPE);

   if(type==(long)POSITION_TYPE_BUY && rt[0].open>ma[0] && rt[0].close<ma[0])       // 買いポジションが開いていて
                                                                                    // 指標線が弱気ローソク足の実体を横切る 
      signal=true;                                                                  // 約定シグナル
   if(type==(long)POSITION_TYPE_SELL && rt[0].open<ma[0] && rt[0].close>ma[0])      // 買いポジションが開いていて
                                                                                    // 指標線が強気ローソク足の実体を横切る  
      signal=true;                                                                  // 約定シグナル
   if(signal)
     {
      if(TerminalInfoInteger(TERMINAL_TRADE_ALLOWED) && Bars(_Symbol,_Period)>100)
         ExtTrade.PositionClose(_Symbol,3);                                         // 約定
     }

エキスパートアドバイザーのテストとパフォーマンス

エキスパートアドバイザーは、H1時間枠で、通貨ペアEUR USD、GBPUSD、USDJPY、USDCAD、AUDUSDでテストされます(決済指値 - 80ポイント、決済逆指値は - 0ポイント、取引ロット量 - 0.1、預金 - 10,000USD、テストモード - 全てのティック、レバレッジ - 1:100、5桁クオーツ、 MetaQuotes-Demo サーバ使用)。

テスト期間は01.01.2016から09.09.2017までです。

各指標について、期間(変動範囲-5〜50、ペース1)および[Growth factor]パラメータ(変動範囲0,0001〜0,0001、ペース0,001)が最適化されました。

可変インデックス動的平均については、EMA期間(指標計算期間)とCMOオシレータ期間(変動範囲 - 5 - 50、ペース1)が最適化されました。

Nick Rypock移動平均については、指標計算の期間を決定するFactパラメータが最適化されました。

指標値は、横と縦のシフトなしで終値に基づいて計算されます。一部の指標には追加パラメータがあります。

移動平均の名前 パラメータ値
適応移動平均
  • 高速EMA期間 - 2
  • 低速EMA期間 - 30
Nick Rypock移動平均
  • 平均化手法 - SMA
  • 平滑化の深さ - 3
  • 平滑化パラメータ - 15(SMAを平均化する方法では使用しない)
  • KF=1
  • Sharp=2

EURUSD通貨ペアでのテスト結果

EURUSD 通貨ペアでのテスト結果(最大純利益合計が最大のもの)は、以下の表に示されています。

移動平均の名前 最適化されたパラメータとその値 取引数 総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン
最大値
移動平均(平均化の手法 - 単純) Period —15、Growth factor - 0.0002 383 1309.82 1.32 3.14 0.1 397.29 (3.81%) 417.26 (3.99%)
移動平均(平均化の手法 - 指数) Period —11、Growth factor - 0.0003 405 1109.72 1.22 3.02 0.08 346.35 (3.39%) 367.45 (3.6%)
移動平均(平均化の手法 - 平滑) Period —6、Growth factor - 0.0003 405 1109.72 1.22 3.02 0.08 346.35 (3.39%) 367.45 (3.6%)
移動平均(平均化の手法 - 加重) Period —22、Growth factor - 0.0002 351 1505.35 1.34 3.65 0.11 383.71 (3.41%) 412.88 (3.91%)
適応移動平均 Period —14、Growth factor - 0.0001 384 1024.19 1.19 1.63 0.07 600.06 (5.41%) 627.36 (5.64%)
二重指数移動平均 Period —28、Growth factor - 0.0003 366 1676.43 1.39 3.49 0.12 460.33 (4.39%) 481.03 (4.58%)
三重指数移動平均 Period —44、Growth factor - 0.0002 482 1842.81 1.35 5.31 0.11 321.07 (3.14%) 347.27 (3.39%)
フラクタル適応移動平均 Period —16、Growth factor - 0.0007 174 766.52 1.37 2.69 0.12 252.4 (2.5%) 285.08 (2.78%)
可変インデックス動的平均 Period EMA - 12、period CMO - 2、Growth factor - 0.0003 333 1237.31 1.26 2.86 0.09 385.44 (3.43%) 432.81 (3.84%)
Nick Rypock移動平均 Period —15、Growth factor - 0.0001 295 1669.62 1.42 4.14 0.14 376.22 (3.5%) 403.52 (3.75%)

テスト結果に基づいて以下の結論を下すことができます。

  • 三重指数移動平均は総純利益と回復率の最良の指標です。他の指標にはそれほど良くありませんが、良好な結果は二重指数移動平均とNick Rypock移動平均でも示されています。
  • 利益率、回復率、シャープレシオ、およびエクイティと残高の最大ドローダウンの最悪の指数は、適応移動平均によって示されます。

テスト結果をより鮮明に比較するために、純利益、利益率、シャープレシオ、回復率、残高およびエクイティドローダウンの指数を次の公式で正規化します。

ここで

  • nValue - 0から1までの区間内の正規化されたパラメータ値
  • Value - 現在のパラメータ値
  • MaxValue - 最大のパラメータ値
  • MinValue - 最小のパラメータ値

です。結果は表に示されています(最良の結果は黄色、最悪の結果は赤色)。

移動平均の名前  総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン最大値 ドローダウンを除いた指標の合計 ドローダウンを含む指標の合計
移動平均(平均化の手法 - 単純) 0.50479 0.56522 0.41033 0.42857 0.41676 0.38618 1.9089 1.10597
移動平均(平均化の手法 - 指数) 0.31887 0.13043 0.37772 0.14286 0.27024 0.24065 0.96988 0.459
移動平均(平均化の手法 - 平滑) 0.31887 0.13043 0.37772 0.14286 0.27024 0.24065 0.96988 0.459
移動平均(平均化の手法 - 加重) 0.68646 0.65217 0.54891 0.57143 0.3777 0.37338 2.45898 1.7079
適応移動平均 0.23941
0 0 0 1 1 0.23941 -1.76059
二重指数移動平均
0.84541

0.86957 0.50543 0.71429 0.59808 0.57248 2.9347 1.76413
三重指数移動平均 1 0.69565 1 0.57143 0.19572 0.18169 3.26708 2.88787
フラクタル適応移動平均 0 0.78261 0.28804 0.71429 0 0 1.78494 1.78494
可変インデックス動的平均 0.43742
0.29631 0.33361 0.27656 0.38267 0.43161 1.34419 0.52992
Nick Rypock移動平均 0.83909 1 0.68207 1 0.35615 0.34603 3.52115 2.81897

表の最後の列では、指標を合計すると、バランスとエクイティドローダウンの最大値が負の符号で取られます(ドローダウンが少ないほど戦略が良好です)。したがって、考えられる戦略の最良の結果は、三重指数移動平均、Nick Rypock移動平均および二重指数移動平均(表中の黄色)によって示されます。TEMA、NRMAおよびDEMAのテスト結果は図 5-10に示されています。

三重指数MAのチャート

図5 三重指数移動平均のバランス(エクイティ)チャート


図6 三重指数移動平均のレポート

NRMAのチャート

図7 Nick Rypock移動平均のバランス(エクイティ)チャート


図8 Nick Rypock移動平均のレポート

DEMAのチャート

図9 二重指数移動平均のバランス(エクイティ)チャート 


図10  二重指数移動平均のレポート 

図5、7、9は、TEMAのバランス(エクイティ)チャートには わずかなドローダウンがありますが、NRMAやDEMAよりも安定していることを示しています。NRMAのバランス(エクイティ)チャートでは、過去3ヶ月間の取引での利益の急上昇が観測されます。DEMAのチャートでは、利益(少量のドローダウン)は2016年12月から伸び始めます。

 GBPUSD通貨ペアでのテスト結果

GBPUSD通貨ペアでのテスト結果は以下の表に示されています。

移動平均の名前 最適化されたパラメータとその値 取引数 総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティ 
ドローダウン最大値
移動平均(平均化の手法 - 単純) Period —38、Growth factor - 0.0005 52 1013.56 1.98 3.82 0.32 207.04 (2.7%) 265.06 (2.65%)
移動平均(平均化の手法 - 指数) Period —41、Growth factor - 0.0002 219 787.12 1.14 1.23 0.07 576.96 (5.21%) 639.44 (5.75%)
移動平均(平均化の手法 - 平滑) Period —42、Growth factor - 0.0003 48 817.42 1.71 3.85 0.26 151.32 (1.51%) 212.24 (2.04%)
移動平均(平均化の手法 - 加重) Period —50、Growth factor - 0.0001 328 1086.08 1.17 1.26 0.07 818.34 (7.45%) 861.04 (7.82%)
適応移動平均 Period —21、Growth factor - 0.001 100 1102.16 1.61 4.61 0.21 176.46 (1.71%) 239.12 (2.28%)
二重指数移動平均 Period —23、Growth factor - 0.0007 263 1070.88 1.21 1.96 0.08 466.24 (4.42%) 547.58 (5.16%)
三重指数移動平均 Period —30、Growth factor - 0.0009 214 1443.90 1.39 4.11 0.14 322.76 (3.02%) 351.14 (3.28%)
フラクタル適応移動平均 Period —38、Growth factor - 0.0001 819 651.54 1.05 0.85 0.02 747.98 (7.12%) 764.88 (7.28%)
可変インデックス動的平均 Period EMA - 35、period CMO - 7、Growth factor - 0.0004 73 1606.98 1.99 5.20 0.34 251.94 (2.52%) 309 (3.08%)
Nick Rypock移動平均 Fact - 45、Growth factor - 0.0005  53 978.30 1.80 3.86 0.29 200.64 (1.99%) 253.58 (2.51%)

以下の表には正規化された結果が示されています(最良の結果は黄色、最悪の結果は赤色)。

移動平均の名前  総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン最大値 ドローダウンを除いた指標の合計 ドローダウンを含む指標の合計
移動平均(平均化の手法 - 単純) 0.3789
0.98929 0.68343 0.91799 0.08354 0.08141 2.96961 2.80467
移動平均(平均化の手法 - 指数) 0.1419 0.09351 0.08718 0.13465 0.63812 0.65845 0.45724 -0.8393
移動平均(平均化の手法 - 平滑) 0.17416 0.70302 0.69032 0.74598 0 0 2.31347 2.31347
移動平均(平均化の手法 - 加重) 0.45481 0.12036 0.09417 0.14629 1 1 0.81562 -1.1844
適応移動平均 0.47164 0.58999 0.86402 0.57613 0.03769 0.04143 2.50177 2.42265
二重指数移動平均
0.4389
0.17142 0.25383 0.1936 0.47213 0.51686 1.05774 0.06875
三重指数移動平均 0.82931 0.36161 0.74969 0.36845 0.25702 0.21409 2.30906 1.83795
フラクタル適応移動平均 0 0 0 0 0.89452 0.85179 0 -1.7463
可変インデックス動的平均 1 1 1 1 0.15085 0.14914 4 3.70001
Nick Rypock移動平均 0.342 0.79826 0.69126 0.82047 0.07394 0.06372 2.65199 2.51433

表が示唆しているように、可変インデックス動的平均の指標が最良で、Nick Rypock移動平均と単純な平均化手法を持った移動平均でかなり良い結果が得られました。VIDYA、NRMA及びSMAのテスト結果は図11-16に示されています。

Vidya_gbp_usd

図11 可変インデックス動的平均のバランス(エクイティ)チャート


図12 可変インデックス動的平均のレポート

NRMA GBPUSD

図13 Nick Rypock移動平均のバランス(エクイティ)チャート


図14 Nick Rypock移動平均のレポート

SMA GBPUSD

図15 単純移動平均のバランス(エクイティ)チャート 


図16  単純移動平均のレポート 

図11~16は、取引開始時に若干ドローダウンが観察された場合にはVIDYA、NRMAおよびSMAが幾分同じように見えることを示しています。 さらにチャートが伸び、VIDYAの取引数はNRMAやSMAよりも多くなります。VIDYAの収益性の高い取引の割合は、NRMAとSMAのものを上回ります。

 USDJPY通貨ペアでのテスト結果

USDJPY 通貨ペアでのテスト結果は以下の表に示されています。

移動平均の名前 最適化されたパラメータとその値 取引数 総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティ 
ドローダウン最大値
移動平均(平均化の手法 - 単純) Period —34、Growth factor - 0.0004 451 1784.95 1.32 3.69 0.1 465.52 (4.17%) 483.34 (4.32%)
移動平均(平均化の手法 - 指数) Period —42、Growth factor - 0.0007 465 1135.23 1.20 2.21 0.07 461.52 (4.08%) 514.61 (4.53%)
移動平均(平均化の手法 - 平滑) Period —33、Growth factor - 0.0008 372 1702.94 1.36 5.15 0.12 296.57 (2.58%) 330.6 (2.87%)
移動平均(平均化の手法 - 加重) Period —50、Growth factor - 0.0005 477 1892.24 1.33 4.66 0.10 384.06 (3.68%) 406.1 (3.88%)
適応移動平均 Period —46、Growth factor - 0.0006 403 1460.51 1.26 2.56 0.09 527.75 (4.77%) 569.67 (5.13%)
二重指数移動平均 Period —18、Growth factor - 0.001 1062 1459.18 1.15 3.55 0.05 366.24 (3.30%) 410.56 (3.69%)
三重指数移動平均 Period —50、Growth factor - 0.0003 657 1115.86 1.15 1.87 0.05 537.18 (4.68%) 597.71 (5.18%)
フラクタル適応移動平均 Period —24、Growth factor - 0.0008 1030 615.92 1.06 0.8 0.02 734.03 (6.58%) 766.01 (6.85%)
可変インデックス動的平均 Period EMA - 18、period CMO - 42、Growth factor - 0.001 238 2338.68 1.64 5.14 0.21 417.66 (3.62%) 454.69 (3.93%)
Nick Rypock移動平均 Fact —28、Growth factor - 0.0002 435 1465.32 1.27 3.00 0.09 456.65 (4.02%) 488.7 (4.29%)

以下の表には正規化された結果が示されています(最良の結果は黄色、最悪の結果は赤色)。

移動平均の名前  総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン最大値 ドローダウンを除いた指標の合計 ドローダウンを含む指標の合計
移動平均(平均化の手法 - 単純) 0.67858 0.45316 0.66457 0.4324 0.38621 0.3508 2.22871 1.49171
移動平均(平均化の手法 - 指数) 0.30144 0.25001 0.32251 0.25216 0.37706 0.42261 1.12612 0.32645
移動平均(平均化の手法 - 平滑) 0.63098 0.51885 1 0.50010 0 0 2.64993 2.64993
移動平均(平均化の手法 - 加重) 0.74086 0.46535 0.88693 0.42881 0.2 0.1734 2.52195 2.14855
適応移動平均 0.49025 0.34559 0.40481 0.36951 0.52846 0.54907 1.61017 0.53264
二重指数移動平均 0.48948 0.15054 0.63263 0.14711 0.15926 0.18364 1.41976 1.07686
三重指数移動平均 0.2902 0.15141 0.2445 0.15928 0.55002 0.61347 0.84538 -0.3181
フラクタル適応移動平均 0 0 0 0 1 1 0 -2
可変インデックス動的平均 1 1 0.99825 1 0.2768 0.285 3.99825 3.43645
Nick Rypock移動平均   0.49305  0.36549  0.50479  0.37182 0.36593  0.36311  1.73515  1.00611 

表が示すように、可変インデックス動的平均および移動平均は平滑化および線形加重平均化手法で最も優れた指標を示します。総純利益、利益率、VIDYAとのシャープレシオの指標は、SMMAとLWMAを上回っていますが、SMMAとLWMA は、バランスとエクイティドローダウンが最も少ないです。VIDYA,  SMMA及びLWMAのテスト結果は図17~22に示されています。

Vidya USDJPY

図17 可変インデックス動的平均のバランス(エクイティ)チャート


図18 可変インデックス動的平均のレポート

LWMA

図19 線形加重移動平均のバランス(エクイティ)チャート


図20 線形加重移動平均のレポート

SSMA

図21 平滑移動平均のバランス(エクイティ)チャート


図22  平滑移動平均のレポート  

図17~22は、収益性の低い取引の割合が低いにもかかわらず、指標が総純利益が高いことを示しています。 これは通貨ペアUSDJPYのボラティリティが高いという事実と結びついています。

USDCAD通貨ペアでのテスト結果

USDCAD通貨ペアでのテスト結果は以下の表に示されています。

移動平均の名前 最適化されたパラメータとその値 取引数 総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティ 
ドローダウン最大値
移動平均(平均化の手法 - 単純) Period —39、Growth factor - 0,0004 59 110 2.30 7.11 0.40 133.44 (1.25%) 154.92 (1.45%)
移動平均(平均化の手法 - 指数) Period —31、Growth factor - 0.0005 76 951.88 1.74 3.01 0.27 278.08 (2.56%) 316.57 (2.91%)
移動平均(平均化の手法 - 平滑) Period —50、Growth factor - 0.0001 121 1262.26 1.57 3.07 0.22 343.76 (3.19%) 411.32 (3.81%)
移動平均(平均化の手法 - 加重) Period —46、Growth factor - 0.0005 46 903.64 2.34 5.31 0.42 128.97 (1.22%) 170.05 (1.61%)
適応移動平均 Period —38、Growth factor - 0.0009 41 990.44 3.18 8.62 0.55 77.57 (0.73%) 114.96 (1.09%)
二重指数移動平均 Period —44、Growth factor - 0.0007 73 941.93 2.07 5.33 0.32 137.28 (1.28%) 176.6 (1.64%)
三重指数移動平均 Period —49、Growth factor - 0.0009 76 559.18 1.62 3.28 0.20 122.21 (1.2%) 170.57 (1.66%)
フラクタル適応移動平均 Period —15、Growth factor - 0.0009 185 504.26 1.27 2.44 0.09 197.12 (1.95%) 206.37 (2.04%)
可変インデックス動的平均 Period EMA - 34、period CMO - 9、Growth factor - 0.0002 111 1563.99 1.86 6.17 0.30 185.64 (1.70%) 253.36 (2.32%)
Nick Rypock移動平均 Fact - 41、Growth factor —0.0004  81 594.91 1.39 1.74 0.16 309.02 (2.88%) 342.16 (3.18%)

以下の表には正規化された結果が示されています(最良の結果は黄色、最悪の結果は赤色)。

移動平均の名前  総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン最大値 ドローダウンを除いた指標の合計 ドローダウンを含む指標の合計
移動平均(平均化の手法 - 単純) 0.56352
0.53776 0.78104 0.67198 0.20989 0.13484 2.5543 2.20957
移動平均(平均化の手法 - 指数) 0.42239 0.24419 0.18441 0.37529 0.75326 0.68029 1.22628 -0.2073
移動平均(平均化の手法 - 平滑) 0.71528 0.15751 0.19342 0.26924 1 1 1.33545 -0.6646
移動平均(平均化の手法 - 加重) 0.37687   0.55859 0.5199 0.69827 0.1931 0.18589 2.15363 1.77465
適応移動平均 0.45878 1 1 1 0 0 3.45878 3.45878
二重指数移動平均 0.413
0.42112 0.52277 0.48957 0.22431 0.20799 1.84645 1.41415
三重指数移動平均 0.05182 0.18256 0.22388 0.23681 0.1677 0.18764 0.69508 0.33974
フラクタル適応移動平均 0 0 0.10249 0 0.44912 0.30844 0.10249 -0.6551
可変インデックス動的平均 1 0.30606 0.64482 0.43945 0.40599 0.467 2.39033 1.51734
Nick Rypock移動平均   0.08554 0.06124  0.14059 0.86949  0.76664  0.28737  -1.3488 

表が示すように、単純化平均法と可変インデックス動的平均を用いた適応移動平均、移動平均が最良の指標を示しています。可変インデックス動的平均は、利益率、回復率、シャープレシオの最良の指標を示していますが、バランスとエクイティを最小限に抑えています。変動指数動的平均が最大の総純利益を有しますが、他の指標は最高ではありません。 AMA, SMA及びVIDYAのテスト結果は図23~28に示されています。

AMA

図23 適応移動平均のバランス(エクイティ)チャート


図24 適応移動平均のレポート

SMA

図25 単純移動平均のバランス(エクイティ)チャート


図26 . 単純移動平均のレポート

VIDyA

図27 可変インデックス動的平均のバランス(エクイティ)チャート


図28 可変インデックス動的平均のレポート

図23~28は、AMAの取引量が最も少なく、収益性の高い取引の割合が最も高いことを示しています。SMAとVIDYAは、より多くの取引量のアカウントで最も高い利益を得ていますが、収益性の高い取引数は、その損失を超えています。AMA、SMA及びVIDYAチャートでは大規模のドローダウンは観測されません。

AUDUSD通貨ペアでのテスト結果

AUDUSD 通貨ペアでのテスト結果は以下の表に示されています。

移動平均の名前 最適化されたパラメータとその値 取引数 総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティ 
ドローダウン最大値
移動平均(平均化の手法 - 単純) Period —7、Growth factor - 0.0009 78 262.48 1.36 1.23 0.11 175.85 (1.74%) 214.18 (2.11%)
移動平均(平均化の手法 - 指数) Period —40、Growth factor - 0.0004 24 652.88 2.62 2.82 0.47 206.76 (1.93%) 231.76 (2.16%)
移動平均(平均化の手法 - 平滑) Period —21、Growth factor - 0.0004 24 651.18 2.61 2.81 0.47 206.76 (1.93%) 231.76 (2.16%)
移動平均(平均化の手法 - 加重) Period —32、Growth factor - 0.0005 24 383.64 1.97 2.25 0.30 116.38 (1.11%) 170.24 (1.62%)
適応移動平均 Period —21、Growth factor - 0.0007 58 252.39 1.30 0.54 0.11 392.15 (3.80%) 464.47 (4.48%)
二重指数移動平均 Period —40、Growth factor - 0.0006 39 296.15 1.70 1.53 0.20 156.62 (1.51%) 193.02 (1.86%)
三重指数移動平均 Period —21、Growth factor - 0.001 69 273.12 1.35 1.05 0.11 228.5 (2.20%) 259.71 (2.50%)
フラクタル適応移動平均 Period —38、Growth factor - 0.0007 83 109.01 1.11 0.55 0.04 142.85 (1.42%) 196.47 (1.94%)
可変インデックス動的平均 Period EMA - 26、period CMO - 5、Growth factor - 0.0006  23 697.59 2.99 2.96 0.53 151.35 (1.41%) 235.38 (2.19%)
Nick Rypock移動平均 Period —22、Growth factor - 0.0006 34 509.27 1.90 2.55 0.28 94.58 (0.9%) 200 (1.89%)

以下の表には正規化された結果が示されています(最良の結果は黄色、最悪の結果は赤色)。

移動平均の名前  総純利益 利益率 回復率 シャープレシオ バランスドローダウン最大値 エクイティドローダウン最大値 ドローダウンを除いた指標の合計 ドローダウンを含む指標の合計
移動平均(平均化の手法 - 単純) 0.26075 0.12921 0.28183 0.13463 0.27311 0.14934 0.80642 0.38397
移動平均(平均化の手法 - 指数) 0.92404 0.80629 0.93942 0.86552 0.37699 0.20909 3.53527 2.94919
移動平均(平均化の手法 - 平滑) 0.92115 0.8006 0.93639 0.86226 0.37699 0.20909 3.5204 2.93433
移動平均(平均化の手法 - 加重) 0.4666 0.45691 0.70658 0.52861 0.07326 0 2.1587 2.08544
適応移動平均 0.2436 0.10105 0 0.13347 1 1 0.47812 -1.5219
二重指数移動平均 0.31795
0.31405 0.40942 0.31848 0.20849 0.07742 1.3599 1.07399
三重指数移動平均 0.27882 0.12776 0.20999 0.14014 0.45005 0.30408 0.75672 0.00259
フラクタル適応移動平均 0 0 0.00473 0 0.16221 0.08915 0.00473 -0.2466
可変インデックス動的平均 1 1 1 1 0.19078 0.22139 4 3.58783
Nick Rypock移動平均   0.68004 0.42124  0.82757  0.48773   0 0.10115  2.41659  2.31545 

表が示唆するように、可変インデックス動的平均と移動平均は、指数関数及び平滑平均化手法で最良の指標で、VIDYAは、総純利益、利益率、回収率、シャープレシオの最良指標を示しています。EMAとSMMAには、ほぼ等しい指標と取引数があります。 VIDYA、EMA、およびSMMAのテスト結果は図29~34に示されています。

VIDyA
図29 可変インデックス動的平均のバランス(エクイティ)チャート


図30 可変インデックス動的平均のレポート

EMA

図31 指数移動平均のバランス(エクイティ)チャート


図32 指数移動平均のレポート

SSMA

図33 平滑移動平均のバランス(エクイティ)チャート


図34 平滑移動平均のレポート

図29~34は、VIDYA、EMA、SMMAのバランス(エクイティ)チャートがほぼ等しいことを示しています。VIDYAはEMAやSMMAよりも収益性の高い取引数が多いです。得られた結果が通貨ペアAUDUSDのボラティリティの低さによって説明されています。

通貨ペアEUR、GBPUSD、USDJPY、USDCAD、AUDUSDのテスト結果に基づいて、以下の結論を下すことができます。

  • 高ボラティリティ( GBPUSD、USDJPY)と低ボラティリティ( AUDUSD)を持つ通貨ペアで最良の結果は可変インデックス動的平均によって示された
  • 適応移動平均は、通貨ペアUSDCADでは最良の指数を示したが、通貨ペアEURUSDでは最悪の結果を示した。
  • 通貨ペアEUR USDでは、最良の指数は三重指数移動平均によって示された。
  • 通貨ペアGBPUSD、USDJPY、USDCAD、AUDUSDの最悪の結果は、フラクタル適応移動平均によって示された。
  • 様々な平均期間での標準的移動平均の結果は有望です。

終わりに

異なる移動平均(MA、単純、指数、平滑、直線加重法)、DEMA、TEMA、FRAMA、AMA、VIDYA、NRMA)を考慮し、それぞれのMAについて計算の手順を説明しました。移動平均は市場への出入りの等しい条件での取引において比較されて最適化されました。

得られた結果に基づいて、以下の結論を下すことができます。

  • 収益性のある戦略は、考察された移動平均のいずれかのパラメータを最適化することによっても獲得できる。
  • 移動平均の大部分はEMA指標の変種である。
  • EMAベースの移動平均の主な利点は、フラットでの誤シグナルの減少及び傾向変化に対するより高速な応答である。
  • 最良の結果は可変インデックス動的平均によって示され、高ボラティリティ及び低ボラティリティ通貨ペアと、平均的ボラティリティ通貨ペアで使用することができる。
本稿では、平滑化係数の計算方法においてEMAと異なる4つの技術指標(AMA、FRAMA、VIDYA、NRMA)を検討しました。これはEMA指標の新しい、より効率的なバリエーションを作るインセンティブとして役立つことでしょう。

MetaQuotes Software Corp.によりロシア語から翻訳された
元の記事: https://www.mql5.com/ru/articles/3791

戦略バランス曲線の品質評価としての R 乗 戦略バランス曲線の品質評価としての R 乗

この記事では、カスタム最適化基準R乗の構築について扱います。 この基準は、戦略のバランス曲線の品質を推定し、安定した戦略を構築するために使うことができます。 今回は、このメトリックのプロパティと品質の推定に使用される、構造と統計的手法について説明します。

三角裁定 三角裁定

本稿では、良く使われる三角裁定取引方法についてお話しします。ここでは、可能な限り主題を分析し、戦略のプラスおよびマイナス側面を考察し、既製のエキスパートアドバイザーコードを開発します。

インジケーターへのエントリの解決 インジケーターへのエントリの解決

トレーダーにはさまざまな事態が発生します。 多くの場合、勝ちトレードは、負けトレードと照らし合わせながら、戦略を再構成することができます。 どちらの場合でも、既知のインジケーターとトレードを比較します。 この記事では、インジケーターを使ったトレードの比較方法を考察します。

カルマンフィルタを用いた価格方向予測 カルマンフィルタを用いた価格方向予測

トレードで成功するには、ノイズ変動と価格変動を分けることができるインジケーターが必要です。 この記事では、最も有望なデジタルフィルタ、カルマンフィルタを検討します。 フィルタを描画して使用する方法について説明します。