Desarrollamos un asesor experto multidivisas (Parte 25): Conectamos una nueva estrategia (II)
En este artículo seguiremos conectando la nueva estrategia con el sistema de optimización automática que hemos creado. Asimismo, veremos qué cambios habrá que introducir en el EA de creación del proyecto de optimización y en los EAs de la segunda y tercera fase.
Creación de un sistema personalizado de detección de regímenes de mercado en MQL5 (Parte 1): Indicador
Este artículo detalla la creación de un sistema de detección de regímenes de mercado MQL5 utilizando métodos estadísticos como la autocorrelación y la volatilidad. Se proporciona el código para que las clases clasifiquen las condiciones de tendencia, rango y volatilidad y un indicador personalizado.
Algoritmo basado en fractales — Fractal-Based Algorithm (FBA)
Hoy veremos un nuevo método metaheurístico basado en un enfoque fractal que permite particionar el espacio de búsqueda para resolver problemas de optimización. El algoritmo identifica y separa secuencialmente las áreas prometedoras, creando una estructura fractal autosimilar que concentra los recursos computacionales en las áreas más prometedoras. El mecanismo de mutación único orientado a las mejores soluciones garantiza un equilibrio óptimo entre la exploración y la explotación del espacio de búsqueda, aumentando significativamente la eficiencia del algoritmo.
Algoritmo de optimización de la fuerza central — Central Force Optimization (CFO)
Este artículo presenta un algoritmo de optimización de la fuerza central (CFO) inspirado en las leyes de la gravedad. Hoy investigaremos cómo los principios de atracción física pueden resolver problemas de optimización en los que las soluciones "más difíciles" atraen a sus homólogas menos exitosas.
Técnicas avanzadas de gestión y optimización de la memoria en MQL5
Descubra técnicas prácticas para optimizar el uso de la memoria en los sistemas de trading MQL5. Aprenda a crear asesores expertos e indicadores eficientes, estables y de rápido rendimiento. Exploraremos cómo funciona realmente la memoria en MQL5, las trampas comunes que ralentizan sus sistemas o provocan fallos y, lo más importante, cómo solucionarlos.
Creación de un sistema personalizado de detección de regímenes de mercado en MQL5 (Parte 2): Asesor experto
Este artículo detalla la construcción de un Asesor Experto Adaptativo (MarketRegimeEA) utilizando el detector de régimen de la Parte 1. Cambia automáticamente las estrategias comerciales y los parámetros de riesgo para mercados con tendencia, rango o volátiles. Se incluyen optimización práctica, manejo de transiciones y un indicador de múltiples marcos de tiempo.
Kit de herramientas de negociación MQL5 (Parte 8): Cómo implementar y utilizar la librería History Manager en sus proyectos
Descubra cómo importar y utilizar sin esfuerzo la librería History Manager en su código MQL5 para procesar los historiales de operaciones en su cuenta MetaTrader 5 en el último artículo de esta serie. Con simples llamadas a funciones de una sola línea en MQL5, puede gestionar y analizar de forma eficaz sus datos de trading. Además, aprenderá a crear diferentes scripts de análisis del historial comercial y a desarrollar un asesor experto basado en precios como ejemplos prácticos de uso. El EA de ejemplo aprovecha los datos de precios y la librería History Manager para tomar decisiones de trading informadas, ajustar los volúmenes de operaciones e implementar estrategias de recuperación basadas en operaciones cerradas anteriormente.
Creación de interfaces gráficas dinámicas MQL5 mediante el escalado de imágenes basado en recursos con interpolación bicúbica en gráficos de trading
En este artículo exploramos las interfaces gráficas dinámicas MQL5, utilizando interpolación bicúbica para un escalado de imágenes de alta calidad en los gráficos de trading. Detallamos opciones de posicionamiento flexibles que permiten el centrado dinámico o el anclaje en esquina con desplazamientos personalizados.
Optimización de arrecifes de coral — Coral Reefs Optimization (CRO)
Este artículo presenta un análisis exhaustivo del algoritmo de optimización de arrecifes de coral (CRO), un método metaheurístico inspirado en los procesos biológicos de formación y desarrollo de los arrecifes de coral. El algoritmo modela aspectos clave de la evolución de los corales: la reproducción externa e interna, el asentamiento de larvas, la reproducción asexual y la competencia por un espacio limitado en el arrecife. El artículo se centra en una versión mejorada del algoritmo.
Algoritmo de optimización caótica — Chaos optimization algorithm (COA): Continuación
Continuamos el estudio del algoritmo de optimización caótica. La segunda parte del artículo está dedicada a los aspectos prácticos de la implementación del algoritmo, sus pruebas y conclusiones.
Automatización de estrategias de trading en MQL5 (Parte 17): Dominar la estrategia de scalping Grid-Mart con un panel de control dinámico
En este artículo, exploramos la estrategia de scalping Grid-Mart, automatizándola en MQL5 con un panel de control dinámico para obtener información comercial en tiempo real. Detallamos su lógica martingala basada en cuadrículas y sus características de gestión de riesgos. También guiamos en las pruebas retrospectivas y la implementación para obtener un rendimiento sólido.
Modelos ocultos de Márkov en sistemas comerciales de aprendizaje automático
Los modelos ocultos de Márkov (HMM) son una potente clase de modelos probabilísticos diseñados para analizar datos secuenciales, donde los eventos observados dependen de alguna secuencia de estados no observados (ocultos) que forman un proceso de Márkov. Los principales supuestos del HMM incluyen la propiedad de Márkov para estados ocultos, lo que significa que la probabilidad de transición al siguiente estado depende solo del estado actual y la independencia de las observaciones dado el conocimiento del estado oculto actual.