Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Información
12+ años
experiencia
0
productos
0
versiones demo
134
trabajos
0
señales
0
suscriptores
Programación profesional de cualquier complejidad para MT4, MT5, C#.
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Superpoint Transformer (SPFormer)
Redes neuronales en el trading: Superpoint Transformer (SPFormer)

En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Estudio de la estructura local de datos
Redes neuronales en el trading: Estudio de la estructura local de datos

La identificación y preservación eficaz de la estructura local de los datos del mercado en condiciones de ruido es una tarea importante en el trading. El uso del mecanismo de Self-Attention ha ofrecido buenos resultados en el procesamiento de estos datos, pero el método clásico no tiene en cuenta las características locales de la estructura original. En este artículo, le propongo familiarizarse con un algoritmo que considera estas dependencias estructurales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)
Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Le proponemos que conozca un nuevo enfoque de la detección de objetos mediante hiper-redes: una hiper-red de generación de coeficientes de peso para el modelo básico que permite tener en cuenta las peculiaridades del estado actual del mercado. Este enfoque mejora la precisión de las previsiones adaptando el modelo a las distintas condiciones comerciales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos
Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.

Kamilla Sayfutdinova
Kamilla Sayfutdinova 2024.09.02
Было бы интересно послушать ваше мнение о модели LSTM
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Transformador vectorial jerárquico (Final)
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)
Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

La comprensión del comportamiento de los agentes es importante en distintos ámbitos, pero la mayoría de los métodos se centran en una única tarea (comprensión, eliminación del ruido, predicción), lo cual reduce su eficacia en escenarios del mundo real. En este artículo, propongo al lector introducir un modelo capaz de adaptarse a diferentes tareas.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Modelos del espacio de estados
Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Resultados prácticos del método TEMPO
Redes neuronales en el trading: Resultados prácticos del método TEMPO

Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales
Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)
Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)

Una forma de mejorar la eficacia del proceso de aprendizaje y la convergencia de los modelos es mejorar los métodos de optimización. Adam-mini es un método de optimización adaptativa desarrollado para mejorar el algoritmo Adam básico.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias
Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias

Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Representación lineal por partes de series temporales
Redes neuronales en el trading: Representación lineal por partes de series temporales

Este artículo es algo distinto de los anteriores de esta serie. En él, hablaremos de una representación alternativa de las series temporales. La representación lineal por partes de series temporales es un método de aproximación de una serie temporal usando funciones lineales en intervalos pequeños.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer
Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer

Al estudiar las distintas arquitecturas de construcción de modelos, prestamos poca atención al proceso de entrenamiento de los mismos. En este artículo intentaremos rellenar ese vacío.