Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Información
12+ años
experiencia
0
productos
0
versiones demo
134
trabajos
0
señales
0
suscriptores
Programación profesional de cualquier complejidad para MT4, MT5, C#.
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Эта статья позволит вам увидеть, как Mamba4Cast превращает теорию в рабочий торговый алгоритм и подготовить почву для собственных экспериментов. Не упустите возможность получить полный спектр знаний и вдохновения для развития собственной стратегии.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)

Продолжаем знакомство с фреймворком Mamba4Cast. И сегодня мы погрузимся в практическую реализацию предложенных подходов. Mamba4Cast создавался не для долгого прогрева на каждом новом временном ряде, а для мгновенного включения в работу. Благодаря идее Zero‑Shot Forecasting модель способна сразу выдавать качественные прогнозы на реальных данных без дообучения и тонкой настройки гиперпараметров.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)

В этой статье мы знакомимся с фреймворком Mamba4Cast и подробно рассматриваем один из его ключевых компонентов — позиционное кодирование на основе временных меток. Показано, как формируется временной эмбеддинг с учётом календарной структуры данных.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)

Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (Окончание)
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (Окончание)

Мы продолжаем реализацию фреймворка DA-CG-LSTM, который предлагает инновационные методы анализа и прогнозирования временных рядов. Использование CG-LSTM и двойного внимания позволяет более точно выявлять как долгосрочные, так и краткосрочные зависимости в данных, что особенно полезно для работы с финансовыми рынками.

youwei_qing
youwei_qing 2025.05.02
I observed that the second parameter 'SecondInput' is unused, as CNeuronBaseOCL's feedForward method with two parameters internally calls the single-parameter version. Can you verify if this is a bug? class CNeuronBaseOCL : public CObject
{
...
virtual bool feedForward(CNeuronBaseOCL *NeuronOCL); virtual bool feedForward(CNeuronBaseOCL *NeuronOCL, CBufferFloat *SecondInput) { return feedForward(NeuronOCL); } ..
} Actor.feedForward((CBufferFloat*)GetPointer(bAccount), 1, false, GetPointer(Encoder),LatentLayer); ?? Encoder.feedForward((CBufferFloat*)GetPointer(bState), 1, false, GetPointer(bAccount)); ??
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)
Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)

Фреймворк Actor–Director–Critic — это эволюция классической архитектуры агентного обучения. В статье представлен практический опыт его реализации и адаптации к условиям финансовых рынков.

2
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)
Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)

Предлагаем познакомиться с фреймворком Actor-Director-Critic, который сочетает в себе иерархическое обучение и многокомпонентную архитектуру для создания адаптивных торговых стратегий. В этой статье мы подробно рассмотрим, как использование Режиссера для классификации действий Актера помогает эффективно оптимизировать торговые решения и повышать устойчивость моделей в условиях финансовых рынков.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (Окончание)
Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (Окончание)

В статье рассматривается практическая реализация фреймворка HiSSD в задачах алгоритмического трейдинга. Показано, как иерархия навыков и адаптивная архитектура могут быть использованы для построения устойчивых торговых стратегий.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)
Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)

Предлагаем познакомиться с фреймворком HiSSD, который объединяет иерархическое обучение и мультиагентные подходы для создания адаптивных систем. В этой работе мы подробно рассмотрим, как этот инновационный подход помогает выявлять скрытые закономерности на финансовых рынках и оптимизировать стратегии торговли в условиях децентрализации.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)
Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)

Продолжаем работу над имплементацией подходов фреймворка CATCH, который объединяет преобразование Фурье и механизм частотного патчинга, обеспечивая точное выявление рыночных аномалий. В этой работе мы завершаем реализацию собственного видения предложенных подходов и проведем тестирование новых моделей на реальных исторических данных.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)
Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Фреймворк CATCH сочетает преобразование Фурье и частотный патчинг для точного выявления рыночных аномалий, недоступных традиционным методам. В данной работе мы рассмотрим, как этот подход раскрывает скрытые закономерности в финансовых данных.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (Final)
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (Final)

Seguimos construyendo los algoritmos que sustentan el framework DADA, una herramienta avanzada para detectar anomalías en las series temporales. Este enfoque permite distinguir eficazmente las fluctuaciones aleatorias de los valores atípicos significativos. A diferencia de los métodos clásicos, el DADA se adapta dinámicamente a los distintos tipos de datos, seleccionando el nivel de compresión óptimo en cada caso.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (DADA)
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (DADA)

Hoy vamos a familiarizarnos con el framework DADA, un método innovador para detectar anomalías en las series temporales. Este ayuda a distinguir las fluctuaciones aleatorias de las presuntas anomalías. A diferencia de los métodos tradicionales, el DADA puede adaptarse de forma flexible a distintos datos. En lugar de un nivel de compresión fijo, usa múltiples opciones y elige la más adecuada para cada caso.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Redes neuronales en el trading: Clusterización doble de series temporales (Final)

Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)

El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Final)
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Final)

Seguimos integrando en los modelos comerciales los métodos propuestos por los autores del framework Attraos. Recordemos que este framework usa conceptos de la teoría del caos para resolver problemas de previsión de series temporales, interpretándolos como proyecciones de sistemas dinámicos caóticos multidimensionales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Attraos)
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Attraos)

El framework de Attraos integra la teoría del caos en la previsión de series temporales a largo plazo tratándolas como proyecciones de sistemas dinámicos caóticos multidimensionales. Usando la invarianza de los atractores, el modelo aplica la reconstrucción del espacio de fases y la memoria dinámica con varias resoluciones para preservar las estructuras históricas.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (Final)
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (Final)

Continuamos nuestro estudio de los modelos híbridos de secuencias de grafos (GSM++) que integran las ventajas de distintas arquitecturas, proporcionando una gran precisión de análisis y una asignación eficiente de los recursos computacionales. Estos modelos revelan eficazmente patrones ocultos, reduciendo el impacto del ruido del mercado y mejorando la calidad de las previsiones.