Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Información
12+ años
experiencia
0
productos
0
versiones demo
134
trabajos
0
señales
0
suscriptores
Programación profesional de cualquier complejidad para MT4, MT5, C#.
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer
Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer

Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)
Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

En trabajos anteriores, hemos introducido el método del Decision Transformer y varios algoritmos derivados de él. Asimismo, hemos experimentado con distintos métodos de fijación de objetivos. Durante los experimentos, hemos trabajado con distintas formas de fijar objetivos, pero el aprendizaje de la trayectoria ya recorrida por parte del modelo siempre quedaba fuera de nuestra atención. En este artículo, queremos presentar un método que llenará este vacío.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.

JimReaper
JimReaper 2023.12.22
Hi Dmitriy, seems like the article is incomplete.
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias
Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias

Desde los primeros artículos sobre el aprendizaje por refuerzo, hemos tocado de un modo u otro dos problemas: la exploración del entorno y la definición de la función de recompensa. Los artículos más recientes se han centrado en el problema de la exploración en el aprendizaje offline. En este artículo, queremos presentar un algoritmo cuyos autores han abandonado por completo la función de recompensa.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.

JimReaper
JimReaper 2023.12.09
THIS IS GENIUS WORK Dmitriy! I Love this!
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline
Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.

JimReaper
JimReaper 2023.12.05
You are the best! Thank you so much for your research. Beautifully done.!
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)
Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)

En este artículo, le presentaremos un interesante algoritmo que se basa en la intersección de los métodos de aprendizaje supervisado y por refuerzo.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)
Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Como resultado de las pruebas realizadas en artículos anteriores, hemos concluido que la optimalidad de la estrategia entrenada depende en gran medida de la muestra de entrenamiento utilizada. En este artículo, nos familiarizaremos con un método bastante sencillo y eficaz para seleccionar trayectorias para el entrenamiento de modelos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 63): Entrenamiento previo del Transformador de decisiones no supervisado (PDT)
Redes neuronales: así de sencillo (Parte 63): Entrenamiento previo del Transformador de decisiones no supervisado (PDT)

Continuamos nuestra análisis de la familia de métodos del Transformador de decisiones. En artículos anteriores ya hemos observado que entrenar el transformador subyacente en la arquitectura de estos métodos supone todo un reto y requiere una gran cantidad de datos de entrenamiento marcados. En este artículo, analizaremos un algoritmo para utilizar trayectorias no marcadas para el entrenamiento previo de modelos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos

En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline
Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline

Durante el aprendizaje offline, optimizamos la política del Agente usando los datos de la muestra de entrenamiento. La estrategia resultante proporciona al Agente confianza en sus acciones. No obstante, dicho optimismo no siempre está justificado y puede acarrear mayores riesgos durante el funcionamiento del modelo. Hoy veremos un método para reducir estos riesgos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)
Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

En los 2 últimos artículos nos hemos centrado en el método Decision Transformer, que modela las secuencias de acciones en el contexto de un modelo autorregresivo de recompensas deseadas. En el artículo de hoy, analizaremos otro algoritmo para optimizar este método.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)
Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.

Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)
Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)

Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.

Yao Wei Lai
Yao Wei Lai 2023.10.11
I greatly admire your article series "Neural Networks Make It Easy", but after reading it for a long time, I still don't understand how to generate models. Could you please send me the models used in each article? I would like to replicate your test to further learn relevant knowledge. Thank you!
Dmitriy Gizlyk
Ha publicado el artículo Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.