Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Información
12+ años
experiencia
0
productos
0
versiones demo
134
trabajos
0
señales
0
suscriptores
Programación profesional de cualquier complejidad para MT4, MT5, C#.
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)
Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Предлагаем познакомиться с продолжением реализации фреймворка SCNN, который сочетает в себе гибкость и интерпретируемость, позволяя точно выделять структурные компоненты временного ряда. В статье подробно раскрываются механизмы адаптивной нормализации и внимания, что обеспечивает устойчивость модели к изменяющимся рыночным условиям.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.

2
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Представляем вашему вниманию заключительную часть цикла, посвящённого GinAR — нейросетевому фреймворку для прогнозирования временных рядов. В этой статье мы анализируем результаты тестирования модели на новых данных и оцениваем её устойчивость в условиях реального рынка.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Предлагаем познакомиться с новой реализацией ключевых компонентов Фреймворка GinAR — адаптивного алгоритма для работы с графовыми временными рядами. В статье шаг за шагом разобраны архитектура, алгоритмы прямого прохода и обратного распространения ошибки.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)

Предлагаем познакомиться с инновационным подходом к прогнозированию временных рядов с пропущенными данными на базе фреймворка GinAR. В статье показана реализация ключевых компонентов на OpenCL, что обеспечивает высокую производительность. В следующей публикации мы подробно рассмотрим интеграцию этих решений в MQL5. Это позволит понять, как применять метод на практике в трейдинге.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Окончание)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Окончание)

Приглашаем вас познакомиться с фреймворком K²VAE и вариантом интеграции предложенных подходов в торговую систему. Вы узнаете, как гибридный подход Koopman–Kalman–VAE помогает строить адаптивные и интерпретируемые модели. А в завершении статьи представлены практические результаты использования реализованных решений.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)

Предлагаем познакомиться с новым подходом, который объединяет классические методы и современные нейросети для анализа временных рядов. В статье подробно раскрыта архитектура и принципы работы модели K²VAE.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)

Предлагаем ознакомиться с оригинальной реализацией фреймворка K²VAE — гибкой модели, способной линейно аппроксимировать сложную динамику в латентном пространстве. В статье показано, как реализовать ключевые компоненты на языке MQL5, включая параметризованные матрицы и их управление вне стандартных нейросетевых слоёв. Материал будет полезен тем, кто ищет практический подход к созданию интерпретируемых моделей временных рядов.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)
Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)

Предлагаем погрузиться в захватывающий мир LightGTS — лёгкого, но мощного фреймворка для прогноза временных рядов, где адаптивная свёртка и RoPE‑кодирование сочетаются с инновационным методами внимания. В нашей статье вы найдёте детальное описание всех компонентов — от создания патчей до сложной смеси экспертов в декодере, готовых к интеграции в MQL5‑проекты. Откройте для себя, как LightGTS выводит автоматическую торговлю на новый уровень!

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)
Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)

Предлагаем вам отправиться в захватывающее путешествие по миру адаптивного анализа финансовых временных рядов и узнать, как превратить сложный спектральный разбор и гибкую свёртку в реальные торговые сигналы. Вы увидите, как LightGTS слушает ритм рынка, подстраиваясь под его изменения шагом переменного окна, и как OpenCL-ускорение позволяет превратить вычисления в кратчайший путь к прибыльным решениям.

Kvannkvann 004603440
Kvannkvann 004603440 2025.08.30
004603440$
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)
Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Предлагаем познакомиться с инновационной техникой адаптивного патчинга — способа гибко сегментировать временные ряды с учётом их внутренней периодичности. А также с техникой эффективного кодирования, позволяющего сохранять важные семантические характеристики при работе с данными разного масштаба. Эти методы открывают новые возможности для точной обработки сложных многомасштабных данных, характерных для финансовых рынков, и существенно повышают стабильность и обоснованность прогнозов.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)

Эта статья увлекательно покажет, как SwiGLU‑эмбеддинг раскрывает скрытые паттерны рынка, а разреженная смесь экспертов внутри Decoder‑Only Transformer делает прогнозы точнее при разумных вычислительных затратах. Мы подробно разбираем интеграцию Time‑MoE в MQL5 и OpenCL, шаг за шагом описываем настройку и обучение модели.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)

Предлагаем познакомиться с современным фреймворком Time-MoE, адаптированным под задачи прогнозирования временных рядов. В статье мы пошагово реализуем ключевые компоненты архитектуры, сопровождая их объяснениями и практическими примерами. Такой подход позволит вам не только понять принципы работы модели, но и применить их в реальных торговых задачах.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Статья посвящена практическому построению модели TimeFound для прогнозирования временных рядов. Рассматриваются ключевые этапы реализации основных подходов фреймворка средствами MQL5.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)

В этой статье мы шаг за шагом собираем ядро интеллектуальной модели TimeFound, адаптированной под реальные задачи прогнозирования временных рядов. Если вас интересует практическая реализация нейросетевых патчинг-алгоритмов в MQL5 — вы точно по адресу.

1
Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)

Mantis — универсальный инструмент для глубокого анализа временных рядов, гибко масштабируемый под любые финансовые сценарии. Узнайте, как сочетание патчинга, локальных свёрток и кросс-внимания позволяет получить высокоточную интерпретацию рыночных паттернов.

Dmitriy Gizlyk
Ha publicado el artículo Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Познакомьтесь с Mantis — лёгкой фундаментальной моделью для классификации временных рядов на базе Transformer с контрастным предварительным обучением и гибридным вниманием, обеспечивающими рекордную точность и масштабируемость.