MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 37 部分):铺平道路 (一)

开发回放系统(第 37 部分):铺平道路 (一)

在这篇文章中,我们终于要开始做我们早就想做的事情了。之前,由于缺乏 "坚实的基础",我没有信心公开介绍这部分内容。现在我有了这样做的基础。我建议您尽可能集中精力理解本文的内容。我指的不仅仅是阅读,我想强调的是,如果你不理解这篇文章,你可能就是完全放弃了理解以后文章内容的希望。
preview
群体优化算法:差分进化(DE)

群体优化算法:差分进化(DE)

在本文中,我们将讨论在前面讨论过的所有算法中最有争议的算法 - 差分进化算法(Differential Evolution,DE)。
preview
精通模型解释:从您的机器学习模型中获取深入见解

精通模型解释:从您的机器学习模型中获取深入见解

机器学习对于任何经验的人来说都是一个复杂而回报的领域。在本文中,我们将深入探讨为您所构建模型提供动力的内在机制,我们探索的错综复杂的世界,涵盖特征、预测和化解复杂性的有力决策,并牢牢把握模型解释。学习驾驭权衡、强化预测、特征重要性排位的艺术,同时确保做出稳健的决策。这篇基本读物可帮助您从机器学习模型中获得更高的性能,并为运用机器学习方法提取更多价值。
preview
群体优化算法:螺旋动态优化 (SDO) 算法

群体优化算法:螺旋动态优化 (SDO) 算法

文章介绍了一种基于自然界螺旋轨迹构造模式(如软体动物贝壳)的优化算法 - 螺旋动力学优化算法(Spiral Dynamics Optimization,SDO)。我对作者提出的算法进行了彻底的修改和完善,本文将探讨这些修改的必要性。
preview
软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。
preview
MQL5 中的组合对称交叉验证

MQL5 中的组合对称交叉验证

在本文中,我们介绍使用纯 MQL5 语言实现组合对称交叉验证的情况,以衡量使用策略测试器的慢速完全算法优化策略后可能出现的过拟合程度。
preview
您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对

您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对

“K-均值”聚类采用数据点分组的方式,该过程最初侧重于数据集的宏观视图,使用随机生成的聚类质心,然后放大并调整这些质心,从而准确表示数据集。我们将对此进行研究,并开拓一些它的用例。
preview
掌握 MQL5:从入门到精通(第一部分):开始编程

掌握 MQL5:从入门到精通(第一部分):开始编程

本文是有关编程的系列文章的概述。这里假设的是读者之前从未接触过编程,因此,本系列从最基础的地方开始。编程知识水平:绝对的新手。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号

本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。
preview
群体优化算法:智能水滴(IWD)算法

群体优化算法:智能水滴(IWD)算法

文章探讨了一种源自无生命自然的有趣算法 - 模拟河床形成过程的智能水滴(IWD,Intelligent Water Drops)。这种算法的理念大大改进了之前的评级领先者 - SDS。与往常一样,新的领先者(修改后的 SDSm)可在附件中找到。
preview
神经网络变得简单(第 67 部分):按照过去的经验解决新任务

神经网络变得简单(第 67 部分):按照过去的经验解决新任务

在本文中,我们将继续讨论收集数据至训练集之中的方法。显然,学习过程需要与环境不断互动。不过,状况可能会有所不同。
preview
您应当知道的 MQL5 向导技术(第 08 部分):感知器

您应当知道的 MQL5 向导技术(第 08 部分):感知器

感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。
preview
CatBoost 模型中的交叉验证和因果推理基础及导出为 ONNX 格式

CatBoost 模型中的交叉验证和因果推理基础及导出为 ONNX 格式

本文提出了使用机器学习创建 EA 交易的方法。
preview
交易者容易使用的止损和止盈

交易者容易使用的止损和止盈

止损(stop loss)和止盈(take profit)对交易结果有重大影响。本文将介绍几种寻找最佳止损单价格的方法。
preview
种群优化算法:Nelder-Mead(NM),或单纯形搜索方法

种群优化算法:Nelder-Mead(NM),或单纯形搜索方法

本文表述针对 Nelder-Mead 方法进行的彻底探索,解释了如何在每次迭代中修改和重新排列单纯形(函数参数空间),从而达成最优解,并讲述了如何改进该方法。
preview
开发回放系统(第 36 部分):进行调整(二)

开发回放系统(第 36 部分):进行调整(二)

让我们的程序员生活举步维艰的原因之一就是做出假设。在本文中,我将向您展示假设是多么危险:例如在 MQL5 编程中假设类型将具有某个特定值,或是在 MetaTrader 5 中假设不同服务器的工作方式相同。
preview
神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

在本文中,我们将领略一个有趣的算法,它是在监督和强化学习方法的交叉点上构建的。
preview
如何在自由职业者服务中通过完成交易员的订单来赚钱

如何在自由职业者服务中通过完成交易员的订单来赚钱

MQL5 自由职业者是一项在线服务,开发人员可以通过这项服务为交易员客户创建交易应用程序而获得收入。该服务自 2010 年起成功运营,迄今已完成超过 10 万个项目,总价值达 700 万美元。我们可以看到,这里涉及到大量资金。
preview
开发回放系统(第 35 部分):进行调整 (一)

开发回放系统(第 35 部分):进行调整 (一)

在向前迈进之前,我们需要解决几个问题。这些实际上并不是必需的修正,而是对类的管理和使用方式的改进。原因是系统内的某些相互作用导致了故障的发生。尽管我们试图找出这些故障的原因以消除它们,但所有这些尝试都没有成功。其中有些情况完全不合理,例如,当我们在 C/C++ 中使用指针或递归时,程序就会崩溃。
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

本文中的多币种 EA 是智能交易系统或交易机器人,能从一个品种的图表里交易(开单、平单、及管理订单,例如:尾随止损和止盈)多个品种(货币对)。这次我们只会用到 1 个指标,即多时间帧或单一时间帧中的三角移动平均线。
preview
机器学习中的量化(第 2 部分):数据预处理、表格选择、训练 CatBoost 模型

机器学习中的量化(第 2 部分):数据预处理、表格选择、训练 CatBoost 模型

本文探讨了量化在树模型构建中的实际应用。探讨了选择量化表和数据预处理的方法。没有使用复杂的数学方程。
preview
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI

在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。
preview
神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。
preview
群体优化算法:带电系统搜索(CSS)算法

群体优化算法:带电系统搜索(CSS)算法

在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 3 部分):添加交易品种、前缀和/或后缀、以及交易时段

如何利用 MQL5 创建简单的多币种智能交易系统(第 3 部分):添加交易品种、前缀和/或后缀、以及交易时段

若干交易员同事发送电子邮件或评论了如何基于经纪商提供的名称里带有前缀和/或后缀的品种使用此多币种 EA,以及如何在该多币种 EA 上实现交易时区或交易时段。
preview
神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。
preview
Scikit-Learn 库中的分类模型及其导出到 ONNX

Scikit-Learn 库中的分类模型及其导出到 ONNX

在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。
preview
神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题

神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题

在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。
preview
您应当知道的 MQL5 向导技术(第 07 部分):树状图

您应当知道的 MQL5 向导技术(第 07 部分):树状图

出于分析和预测目的而把数据分类是机器学习中一个非常多样化的领域,它具有大量的方式和方法。本文着眼于一种这样的方式,即集聚层次化分类。
preview
开发回放系统(第33部分):订单系统(二)

开发回放系统(第33部分):订单系统(二)

今天,我们将继续开发订单系统。正如您将看到的,我们将大规模重用其他文章中已经展示的内容。尽管如此,你还是会在这篇文章中获得一点奖励。首先,我们将开发一个可以与真实交易服务器一起使用的系统,无论是从模拟账户还是从真实账户。我们将广泛使用MetaTrader 5平台,该平台将从一开始就为我们提供所有必要的支持。
preview
神经网络实验(第 7 部分):传递指标

神经网络实验(第 7 部分):传递指标

传递指标至感知器的示例。本文讲述了一般概念,并展示了最简单的现成智能交易系统,后随其优化和前向验算结果。
preview
群体优化算法:随机扩散搜索(SDS)

群体优化算法:随机扩散搜索(SDS)

本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。
preview
神经网络变得简单(第 60 部分):在线决策转换器(ODT)

神经网络变得简单(第 60 部分):在线决策转换器(ODT)

最近两篇文章专门介绍了决策转换器方法,其在期望奖励的自回归模型境况下针对动作序列进行建模。在本文中,我们将研究该方法的另一种优化算法。
preview
群体优化算法:思维进化计算(MEC)算法

群体优化算法:思维进化计算(MEC)算法

本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。
preview
神经网络变得简单(第 59 部分):控制二分法(DoC)

神经网络变得简单(第 59 部分):控制二分法(DoC)

在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
preview
群体优化算法:混合蛙跳算法(SFL)

群体优化算法:混合蛙跳算法(SFL)

本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。
preview
为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分

为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分

本文是一系列文章的第四部分,介绍了我们为 MQTT 协议开发本机 MQL5 客户端的步骤。在这一部分中,我们将描述什么是 MQTT v5.0 属性,它们的语义,以及我们如何阅读其中的一些属性,并提供一个如何使用属性来扩展协议的简短示例。
preview
神经网络变得简单(第 58 部分):决策转换器(DT)

神经网络变得简单(第 58 部分):决策转换器(DT)

我们继续探索强化学习方法。在本文中,我将专注于一种略有不同的算法,其参考智能体政策构造一连串动作的范式。