Artigos sobre como testar estratégias na linguagem MQL5

icon

Saiba como desenvolver, escrever e testar uma estratégia de negociação, como encontrar os parâmetros ideais do sistema e como analisar os resultados obtidos. A plataforma MetaTrader dispõe de inúmeras funcionalidades para que os desenvolvedores de robôs de negociação testem suas ideias de negociação com rapidez e precisão. Aprenda nestes artigos como testar robôs multimoedas e como usar os recursos da MQL5 Cloud Network para otimização.

É importante os desenvolvedores de sistemas de negociação automatizados começarem por aprender os princípios básicos de como testar e gerar algoritmos de ticks dentro do Testador de Estratégias.

Novo artigo
recentes | melhores
preview
Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Desta vez, vamos dar uma olhada no algoritmo de otimização de colônia de formigas ("Ant Colony optimization algorithm", em inglês). O algoritmo é muito interessante e ambíguo. Trata-se de uma tentativa de criar um novo tipo de ACO.
preview
Testando o conteúdo informativo de diferentes tipos de médias móveis

Testando o conteúdo informativo de diferentes tipos de médias móveis

Todos conhecemos a importância da média móvel para muitos traders. Existem diferentes tipos de médias móveis que podem ser úteis no trading. Vamos examiná-las e realizar uma simples comparação para ver qual delas pode apresentar os melhores resultados.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 15): Nascimento do SIMULADOR (V) - RANDOM WALK

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 15): Nascimento do SIMULADOR (V) - RANDOM WALK

Neste artigo iremos finalizar a fase, onde estamos desenvolvendo o simulador para o nosso sistema. O principal proposito aqui será ajustar o algoritmo visto no artigo anterior. Tal algoritmo tem como finalidade criar o movimento de RANDOM WALK. Por conta disto, o entendimento do conteúdo dos artigos anteriores, é primordial para acompanhar o que será explicado aqui. Se você não acompanhou o desenvolvimento do simulador, aconselho você a ver esta sequência desde o inicio. Caso contrário, poderá ficar perdido no que será explicado aqui.
preview
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 03):  Ajustando as coisas (I)

Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 03): Ajustando as coisas (I)

Vamos dar uma ajeitada nas coisas, pois este começo não está sendo um dos melhores. Se não fizermos isto agora, vamos ter problemas logo, logo.
preview
Desenvolvendo um sistema de Replay (Parte 65): Dando play no serviço (VI)

Desenvolvendo um sistema de Replay (Parte 65): Dando play no serviço (VI)

Aqui neste artigo mostrarei como faremos para conseguir implementar o avanço rápido, assim como também resolveremos o problema do indicador de mouse, quando este está sendo usando junto com a aplicação de replay / simulação. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)

Aqui iremos dar uma leve otimizada nas coisas. Isto para facilitar o que iremos fazer no próximo artigo. Mas também irei explicar como você pode visualizar o que o simulador está gerando em termos de aleatoriedade.
preview
Algoritmos de otimização populacional: Método Nelder-Mead (NM)

Algoritmos de otimização populacional: Método Nelder-Mead (NM)

O artigo apresenta um estudo completo do método Nelder-Mead explicando como o simplex — o espaço dos parâmetros da função — muda e se reestrutura a cada iteração para alcançar a solução ótima, e também descreve como melhorar este método.
preview
Simulação de mercado (Parte 19): Iniciando o SQL (II)

Simulação de mercado (Parte 19): Iniciando o SQL (II)

Como eu disse no primeiro artigo sobre SQL, não faz sentido você perder tempo, programado rotinas e mais rotinas a fim de conseguir, gerar ou produzir algo que o próprio SQL já contém. Porém sem saber o básico do básico, você não conseguirá fazer nada em SQL, a fim de aproveitar de alguma forma o que esta ferramenta tem a nos oferecer. Sendo assim, aqui neste artigo iremos ver como fazer para conseguir executar tarefas primordiais a serem feitas em bancos de dados.
preview
Algoritmos de otimização populacionais: salto de sapo embaralhado

Algoritmos de otimização populacionais: salto de sapo embaralhado

O artigo apresenta uma descrição detalhada do algoritmo salto de sapo embaralhado (Shuffled Frog Leaping Algorithm, SFL) e suas capacidades na solução de problemas de otimização. O algoritmo SFL é inspirado no comportamento dos sapos em seu ambiente natural e oferece uma nova abordagem para a otimização de funções. O algoritmo SFL é uma ferramenta eficaz e flexível, capaz de lidar com diversos tipos de dados e alcançar soluções ótimas.
preview
Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.
preview
Estratégia de negociação no indicador de reconhecimento apurado de velas Doji

Estratégia de negociação no indicador de reconhecimento apurado de velas Doji

O indicador baseado em metabarras detecta mais velas do que o clássico baseado em barras únicas. Vamos ver se ele oferece benefícios reais na negociação automatizada.
preview
Teoria das Categorias em MQL5 (Parte 14): funtores com ordem linear

Teoria das Categorias em MQL5 (Parte 14): funtores com ordem linear

Este artigo, parte de uma série de artigos sobre a implementação da teoria das categorias no MQL5, é dedicado aos funtores. Vamos explorar como a ordem linear pode ser mapeada em um conjunto de dados através dos funtores ao analisar dois conjuntos de dados que, à primeira vista, parecem não ter nenhuma conexão entre si.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes

Precisamos nos organizar melhor. O código está crescendo e se não o organizarmos agora, será impossível fazer isto depois. Então agora vamos dividir para conquistar. O fato de que o MQL5, nos permite usar classes, nos ajudará nesta tarefa. Mas para fazer isto é preciso que você tenha algum conhecimento sobre algumas coisas envolvidas nas classes. E talvez a que mais deixe, aspirantes e iniciantes perdidos seja a herança. Então neste artigo, irei de forma prática e simples como fazer uso de tais mecanismos.
preview
Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)

O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.
preview
Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle

Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle

Neste artigo mostrarei o que um pouco de refinamento no código é capaz de fazer. Tal refinamento tem como objetivo tornar mais simples o nosso código. Fazer um maior uso das chamadas de biblioteca do MQL5. Mas principalmente fazer com que o nosso código se torne bem mais estável, seguro e fácil de ser usado por outras classe, ou outros códigos que por ventura construiremos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay

Aqui vamos ver como você pode utilizar dados mais fieis ( tickets negociados ) no sistema de replay, sem necessariamente ter que se preocupar se eles estão ou não ajustados.
preview
Desenvolvendo um sistema de Replay (Parte 48): Entendendo e compreendendo alguns conceitos

Desenvolvendo um sistema de Replay (Parte 48): Entendendo e compreendendo alguns conceitos

Que tal aprender algo novo. Neste artigo você irá aprender como transformar Scripts e Serviços e qual a utilidade em se fazer isto.
preview
Desenvolvendo um sistema de Replay (Parte 63): Dando play no serviço (IV)

Desenvolvendo um sistema de Replay (Parte 63): Dando play no serviço (IV)

Neste arquivo vamos finalmente resolver os problemas de simulação dos ticks, em uma barra de um minuto, de forma que eles possam conviver junto com ticks reais. Isto para evitar que venhamos a ter problemas depois. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados

Aqui vamos ver como disparar eventos customizados e melhorar a questão sobre como o indicador informa o status do serviço de replay/simulação.
preview
Desenvolvendo um sistema de Replay (Parte 38): Pavimentando o Terreno (II)

Desenvolvendo um sistema de Replay (Parte 38): Pavimentando o Terreno (II)

Muita gente que se diz programador de MQL5, não tem as bases que estarei apresentando aqui, neste artigo. Muitos consideram o MQL5 algo limitado, mas tudo isto se deve a falta de conhecimento. Então, não fique com vergonha por não saber. Mas tenha vergonha de não perguntar. Mas o simples fato, de forçar, e obrigar o MetaTrader 5 a não permitir que um indicador seja duplicado. Não nos dá de maneira alguma meios de efetivar uma comunicação bilateral entre o indicador e o EA. Ainda estamos um pouco longe disto. Mas o simples fato de que o indicador não estará duplicado no gráfico, já nos garante uma certa tranquilidade.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolver um simulador pode ser muito mais interessante do que parece. Então vamos dar mais alguns passos nesta direção, pois a coisa está começando a ficar empolgante.
preview
Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Aqui neste artigo iremos complicar um pouco as coisa. Fazendo uso do que foi visto nos artigos anteriores, iremos começar a liberar o arquivo de Template, para que o usuário possa fazer uso de um template pessoal. No entanto, irei fazer as mudanças aos poucos, visto que também irei modificar o indicador a fim de proporcionar um alivio ao MetaTrader 5.
preview
Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Cansado de perder tempo procurando aquele arquivo, que é preciso para fazer a sua aplicação funcionar ?!?! Que tal embutir tudo no executável ? Assim você nunca irá perder tempo procurando as coisas. Sei que muitos fazem uso, exatamente daquela forma de distribuir e guardar as coisas. Mas existe uma maneira bem mais adequada. Pelo menos no que diz respeito a distribuição de executáveis e armazenamento dos mesmos. A forma que irei explicar aqui, pode vim a lhe ser de grande ajuda. Já que você pode usar o próprio MetaTrader 5 como sendo um grande ajudante, assim como o MQL5. Não é algo lá tão complexo, ou difícil de ser entendido.
preview
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"
preview
Desenvolvendo um Trading System com base no Livro de Ofertas (Parte I): o indicador

Desenvolvendo um Trading System com base no Livro de Ofertas (Parte I): o indicador

O livro de ofertas - Depth of Market - é sem dúvidas algo de bastante relevância para a execução de trades rápidos, sobretudo em algoritmos de alta frequência - os HFT. Nessa série de artigos, iremos explorar esse tipo de evento de mercado que podemos obeter através do broker em muitos dos ativos negociados. Começaremos com um indicador em que são configuráveis a paleta de cores, a posição e o tamanho do histograma a ser exibido diretamente no gráfico. Também abordaremos uma forma de gerar eventos BookEvent para fins de testes do indicador em condições específicas. Como possíveis temas a serem abordados nos artigos futuros estão o armazenamento dessas distribuições de preços e formas de usá-las no testador de estratégia.
preview
Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
preview
Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Neste artigo, falaremos sobre o algoritmo que apresenta os resultados mais contraditórios de todos os examinados anteriormente, o de evolução diferencial (DE).
preview
Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Agora que a classe C_Mouse foi melhorada. Podemos focar em criar uma classe que será usada para promover uma base completamente diferente de estudos. Mas como expliquei no inicio do artigo, não iremos usar herança ou polimorfismo para gerar esta nova classe. Iremos modificar, ou melhor dizendo, agregar alguns objetos novos a linha de preço. Isto neste primeiro momento, no próximo artigo mostrarei como modificar os estudos. Mas faremos isto sem mexer no código da classe C_Mouse. Sei que na pratica, isto seria mais simples ser feito usando herança ou polimorfismo. No entanto, existem técnicas diferentes para se conseguir a mesma coisa.
preview
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview
Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Neste artigo iremos implementar o indicador de controle de forma que ele possa o sistema de mensagens que está sendo implementado. Apesar de não ser algo muito complexo de ser feito, você precisa entender alguns detalhes referentes a como fazer a inicialização deste módulo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Conseguimos desenvolver, uma forma de fazer com que o replay de mercado, fosse executado dentro de um tempo bastante realista e aceitável. Vamos continuar nosso projeto. Agora iremos adicionar dados de forma a ter um comportamento melhor do replay.
preview
Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Uma das coisas que mais pode complicar a nossa vida como programadores é o fato de supor as coisas. Neste artigo mostrarei o perigo de fazer suposições. Tanto na parte da programação em MQL5, onde você supõem que um tipo terá um dado tamanho. Assim como no uso do MetaTrader 5, onde você supõem que servidores diferentes funcionam da mesma forma.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

A transformada de Fourier é um método de decompor uma onda de pontos de dados em possíveis partes constituintes que foi introduzida por Joseph Fourier. Esse recurso pode ser útil para os traders, e é isso que abordaremos neste artigo.
preview
Desenvolvendo um sistema de Replay (Parte 28): Projeto Expert Advisor — Classe C_Mouse (II)

Desenvolvendo um sistema de Replay (Parte 28): Projeto Expert Advisor — Classe C_Mouse (II)

Quanto de fato os primeiros sistema capazes de fatorar alguma coisa, começaram a ser produzidos. Tudo tinha que ser feito por engenheiros com grande conhecimento, no que estava sendo projetado. Isto nos primórdios da computação, onde se quer existia algum tipo de terminal, para que fosse possível programar algo. Conforme ia se desenvolvendo, e o interesse de que mais pessoas também conseguisse criar algo, começou surgir novas ideias e meios, de programar aquelas máquinas, que antes era feito mudando a posição dos conectores. Assim começamos a ter os primeiros terminais.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 06): Primeiras melhorias (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 06): Primeiras melhorias (I)

Neste artigo vamos começar a estabilizar todo o sistema. Pois sem que o sistema esteja de fato estabilizado, podemos correr risco de não conseguir cumprir os próximos passos.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)

Aqui estamos retirando o bloqueio de simulação baseada na plotagem LAST, e adicionando um ponto de entrada para este tipo de simulação. Agora prestem atenção ao fato de que todo o funcionamento, irá se basear no sistema do forex. Sendo que a única diferença, aqui nesta rotina, é o fato de que estaremos separando uma simulação BID, de uma LAST. Mas a questão de randomização do tempo e a sua correção para ser utilizado pela classe C_Replay, é a mesma em ambos modos de simulação. Isto é uma coisa boa, já que se modificarmos um dos modos, o outro irá se beneficiar, pelo menos no que rege a parte do tempo entre os tickets
preview
Desenvolvendo um sistema de Replay (Parte 43): Projeto do Chart Trade (II)

Desenvolvendo um sistema de Replay (Parte 43): Projeto do Chart Trade (II)

Grande parte das pessoas que querem, ou desejam aprender a programar, não fazem de fato ideia, do que estão fazendo. O que elas fazem é tentar criar as coisas de uma determinada maneira. No entanto, quando programamos não estamos de fato tentando criar um solução. Se você tentar fazer isto, desta forma irá gerar mais problemas do que realmente uma solução. Aqui iremos fazer algo um pouco mais avançado, e por consequência diferente.
preview
Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

O artigo aborda a busca por difusão estocástica, SDS, um algoritmo de otimização muito poderoso e prático, baseado nos princípios de passeio aleatório. O algoritmo permite encontrar soluções ótimas em espaços multidimensionais complexos, possuindo uma alta velocidade de convergência e a capacidade de evitar extremos locais.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)

intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.