
MetaTrader 5でのモンテカルロ並べ替え検定
この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。

リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム
もっと仕事を整理する必要があります。コードはどんどん大きくなっており、今やらなければ不可能になります。分割して征服しましょう。MQL5では、このタスクを実行するのに役立つクラスを使用することができますが、そのためにはクラスに関する知識が必要です。おそらく初心者を最も混乱させるのは継承でしょう。この記事では、これらのメカニズムを実用的かつシンプルな方法で使用する方法を見ていきます。

リプレイシステムの開発 - 市場シミュレーション(第15回):シミュレーターの誕生(V) - ランダムウォーク
この記事では、私たちのシステムのシミュレーターの開発を完成させます。ここでの主な目的は、前回の記事で説明したアルゴリズムを設定することです。このアルゴリズムは、ランダムウォークの動きを作り出すことを目的としています。したがって、今日の資料を理解するためには、過去の記事の内容を理解する必要があります。シミュレーターの開発をフォローしていない方は、この一連の流れを最初から読まれることをお勧めします。さもないと、ここで説明されることがわからなくなるかもしれません。

リプレイシステムの開発 - 市場シミュレーション(第14回):シミュレーターの誕生(IV)
この記事ではシミュレーターの開発段階を続けます。 今回は、ランダムウォークタイプの動きを効果的に作成する方法を見ていきます。このような動きには非常に興味をそそられます。資本市場で起こるすべてのことの基礎がそれによって形成されるためです。さらに、市場分析をおこなう上で基本となるいくつかの概念についても理解を深めていきます。

リプレイシステムの開発 - 市場シミュレーション(第12回):シミュレーターの誕生(II)
シミュレーターの開発は、見た目よりもずっと面白いものです。事態はさらに面白くなってきているため、今日は、この方向にもう少し踏み込んでみましょう。

リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)
バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。


リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する
ここでは、リプレイシステムで、調整されているかどうかを気にすることなく、より信頼性の高いデータ(取引されたティック)を使用する方法を見ていきます。

リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント
ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。

リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)
ここでは、次回以降の仕事に関連するいくつかの要素を簡略化します。シミュレーターが生成するランダム性を視覚化する方法も説明しましょう。

リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック
この記事では、MQL5言語を使用しながら指標をロックする方法を見ていきます。非常に興味深く素晴らしい方法でそれをおこないます。

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)
前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。

MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)
この記事では、圏論の重要な柱である自然変換を紹介します。一見複雑に見える定義に注目し、次に本連載の「糧」であるボラティリティ予測について例と応用を掘り下げていきます。

さまざまな移動平均タイプをテストして、それらがどの程度洞察力に富むかを確認する
多くのトレーダーにとって移動平均指標が重要であることは周知の事実です。取引に役立つ移動平均タイプは他にもあります。この記事ではこれらのタイプを特定し、それぞれのタイプと最も人気のある単純移動平均タイプを簡単に比較して、どれが最良の結果を示すことができるかを確認します。

MQL5の圏論(第16回):多層パーセプトロンと関手
本連載16回目となる今回は、関手と、それが人工ニューラルネットワークを使ってどのように実装できるかを見ていきます。当連載ではこれまで、ボラティリティを予測するというアプローチをとってきましたが、今回はポジションのエントリーとエグジットのシグナルを設定するためのカスタムシグナルクラスの実装を試みます。

MQL5の圏論(第15回):関手とグラフ
この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。

MQL5ストラテジーテスターを理解し、効果的に活用する
MQL5のプログラマーや開発者は、重要で貴重なツールをマスターする必要があります。ストラテジーテスターはこれらのツールのうちの1つです。この記事は、MQL5のストラテジーテスターを理解し、使用するための実践的なガイドです。

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加
現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。

MQL5の圏論(第14回):線形順序を持つ関手
この記事は、MQL5における圏論の実装に関する広範な連載の一部であり、関手について掘り下げます。関手のおかげで線形順序が集合にどのように写像できるかを検証します。一般的には何のつながりもないと見なされてしまうような2つのデータ集合について考えます。

リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)
システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。

MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント
この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。

Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。

リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。

知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換
ジョセフ・フーリエによって導入されたフーリエ変換は、複雑なデータの波動点を単純な構成波に分解する手段です。この記事では、トレーダーにとって有益なこの機能を見ていきます。

多層パーセプトロンとバックプロパゲーションアルゴリズム(その3):ストラテジーテスターとの統合 - 概要(I)
多層パーセプトロンは、非線形分離可能な問題を解くことができる単純なパーセプトロンを進化させたものです。バックプロパゲーションアルゴリズムと組み合わせることで、このニューラルネットワークを効果的に学習させることができます。多層パーセプトロンとバックプロパゲーション連載第3回では、このテクニックをストラテジーテスターに統合する方法を見ていきます。この統合により、取引戦略を最適化するためのより良い意思決定を目的とした複雑なデータ分析が可能になります。この記事では、このテクニックの利点と問題点について説明します。

MQL5の圏論(第7回):多重集合、相対集合、添字集合
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる
今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。

MQL5の圏論(第5回)等化子
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。

MQL5の圏論(第4回):スパン、実験、合成
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)
SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。

MQL5行列を使用した誤差逆伝播法によるニューラルネットワーク
この記事では、行列を使用してMQL5で誤差逆伝播法(バックプロパゲーション)アルゴリズムを適用する理論と実践について説明します。スクリプト、インジケータ、エキスパートアドバイザー(EA)の例とともに、既製のクラスが提示されます。

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。

エキスパートアドバイザー(EA)の選び方:取引ボットを却下するための20の強力な基準
この記事では、「どうやって正しいエキスパートアドバイザーを選べばいいのか」という問いに答えようと思います。ポートフォリオに最適なのはどれでしょうか。また、市場で入手できる大規模な取引ボットリストをどのようにフィルタリングすればいいのでしょうか。この記事では、エキスパートアドバイザーを却下するための20の明確で強力な基準を紹介します。それぞれの基準が提示され、よく説明されているので、より持続的な判断ができ、より収益性の高いエキスパートアドバイザーを集めることができるようになります。