MQL5言語での戦略テストに関する記事

icon

どのように取引戦略を開発し、記述し、テストするか、どのように最適なシステムパラメータを見つけるか、どのようにその結果を分析するか?MetaTraderプラットフォームは自動売買ロボットの開発者に、トレーディングアイデアを速く正確にテストするための豊富な機能を提供します。この記事を読んで、どのように複数通貨ロボットをテストするか、どのように最適化を目的としてMQL5Cloud Networkを使用するかを学んでください。

自動取引システムの開発者はテスティングの基本とストラテジーテスターの中のティック生成アルゴリズムについて読むことから始めることをお勧めします。

新しい記事を追加
最新 | ベスト
preview
知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。
preview
化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。
preview
リプレイシステムの開発(第54回):最初のモジュールの誕生

リプレイシステムの開発(第54回):最初のモジュールの誕生

この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。
preview
化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学

この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
preview
リプレイシステムの開発(第53回):物事は複雑になる(V)

リプレイシステムの開発(第53回):物事は複雑になる(V)

今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
preview
リプレイシステムの開発(第52回):物事は複雑になる(IV)

リプレイシステムの開発(第52回):物事は複雑になる(IV)

この記事では、信頼性と安定性のある操作を確保するために、マウスポインタを変更してコントロール指標との対話を有効にします。
preview
多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択

多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択

自動最適化の第1段階はすでに実装されています。いくつかの基準に従ってさまざま銘柄と時間枠の最適化を実行し、各パスの結果に関する情報をデータベースに保存します。ここで、最初の段階で見つかったものから最適なパラメータセットのグループを選択します。
preview
最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。
preview
リプレイシステムの開発(第51回):物事は複雑になる(III)

リプレイシステムの開発(第51回):物事は複雑になる(III)

この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
preview
MQL5入門(第9回):MQL5のオブジェクトの理解と使用

MQL5入門(第9回):MQL5のオブジェクトの理解と使用

現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。
preview
人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。
preview
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。
preview
リプレイシステムの開発(第50回):物事は複雑になる(II)

リプレイシステムの開発(第50回):物事は複雑になる(II)

チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。
preview
リプレイシステムの開発(第49回):物事は複雑になる(I)

リプレイシステムの開発(第49回):物事は複雑になる(I)

この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。
preview
リプレイシステムの開発(第48回):サービスの概念を理解する

リプレイシステムの開発(第48回):サービスの概念を理解する

何か新しいことを学んでみませんか。この記事では、スクリプトをサービスに変換する方法と、それがなぜ便利なのかについて説明します。
preview
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

今回は、前回の記事で作成した指標を元に、MQL5で最初のエキスパートアドバイザー(EA)を作成します。リスク管理を含め、取引プロセスを自動化するために必要な全機能を紹介します。これにより、手動の取引執行から自動化されたシステムへとスムーズに移行できるメリットがあります。
preview
多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
preview
リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)

リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)

アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。
preview
初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

潜在能力を引き出しましょう。あなたはチャンスに囲まれています。MQL5の旅をスタートさせ、次のレベルへと引き上げる3つの秘訣をご覧ください。初心者にもプロにも役立つヒントやトリックをご紹介します。
preview
多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

EA開発の主な段階を概説しましょう。最初におこなうべき重要な作業の1つは、開発した取引戦略のインスタンスを最適化することです。最適化プロセスにおいて、テスターが通過したパスに関する必要な情報を一箇所に集約してみましょう。
preview
多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。
preview
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
preview
リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。
preview
多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。
preview
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)

母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)

(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。
preview
母集団最適化アルゴリズム:ボイドアルゴリズム

母集団最適化アルゴリズム:ボイドアルゴリズム

この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。
preview
多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

取引戦略を最適化した後、パラメータのセットを受け取ります。これらを使用して、1つのEAに複数の取引戦略のインスタンスを作成することができます。以前は手動でおこないましたが、ここでは、このプロセスの自動化を試みます。
preview
最適化アルゴリズムの効率における乱数生成器の品質の役割

最適化アルゴリズムの効率における乱数生成器の品質の役割

この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
preview
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。
preview
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
preview
GIT:それは何か?

GIT:それは何か?

今回は、開発者にとって非常に重要なツールを紹介しましょう。GITに馴染みのない方は、この記事を読んでGITとは何か、MQL5でどのように使用するかをご覧ください。
preview
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
preview
リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

もっと面白いものを作りましょう。ネタバレはしたくないので、理解を深めるために記事を読んでください。リプレイ/シミュレーターシステムの開発に関する本連載の最初の段階から、私は、開発中のシステムと実際の市場の両方で同じようにMetaTrader 5プラットフォームを使用することがアイディアであると述べてきました。これが適切におこなわれることが重要です。ある道具を使用して訓練して戦い方を学んだ末、戦いの最中に別の道具を使用しなければならないというようなことは誰もしたくありません。
preview
PythonとMQL5を使用した取引戦略の自動パラメータ最適化

PythonとMQL5を使用した取引戦略の自動パラメータ最適化

取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第23回):CNN

知っておくべきMQL5ウィザードのテクニック(第23回):CNN

畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第I部)

母集団最適化アルゴリズム:極値から抜け出す力(第I部)

本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。
preview
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。