取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview
取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

革新的なChimeraフレームワークの探求を続けます。このフレームワークは、ニューラルネットワーク技術を用いて多次元時系列を解析する二次元状態空間モデル(2D-SSM)です。この手法は、高い予測精度と低い計算コストを両立します。
preview
ビリヤード最適化アルゴリズム(BOA)

ビリヤード最適化アルゴリズム(BOA)

BOA法は、古典的なビリヤードに着想を得ており、最適解を探すプロセスを、玉が穴に落ちることで最良の結果を表すゲームとしてシミュレーションします。本記事では、BOAの基本、数学モデル、およびさまざまな最適化問題を解く際の効率について考察します。
preview
カオスゲーム最適化(CGO)

カオスゲーム最適化(CGO)

本記事では、新しいメタヒューリスティックアルゴリズムであるカオスゲーム最適化(CGO)を紹介します。CGOは、高次元問題に対しても高い効率を維持できるという独自の特性を示しています。ほとんどの最適化アルゴリズムとは異なり、CGOは問題の規模が大きくなると性能が低下するどころか、場合によっては向上することさえあり、これがこのアルゴリズムの主要な特徴です。