Andrey Dik
Andrey Dik
  • Information
12+ Jahre
Erfahrung
5
Produkte
87
Demoversionen
15
Jobs
0
Signale
0
Abonnenten
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Hat den Artikel Алгоритм успешного ресторатора — Successful Restaurateur Algorithm (SRA) veröffentlicht
Алгоритм успешного ресторатора —  Successful Restaurateur Algorithm (SRA)

Алгоритм успешного ресторатора (SRA) — инновационный метод оптимизации, вдохновленный принципами управления ресторанным бизнесом. В отличие от традиционных подходов, SRA не отбрасывает слабые решения, а улучшает их, комбинируя с элементами успешных. Алгоритм показывает конкурентоспособные результаты и предлагает свежий взгляд на балансирование между исследованием и эксплуатацией в задачах оптимизации.

4
Andrey Dik
Hat den Artikel Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA) veröffentlicht
Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.

3
Andrey Dik
Hat den Artikel Chaos Game Optimization (CGO) veröffentlicht
Chaos Game Optimization (CGO)

The article presents a new metaheuristic algorithm, Chaos Game Optimization (CGO), which demonstrates a unique ability to maintain high efficiency when dealing with high-dimensional problems. Unlike most optimization algorithms, CGO not only does not lose, but sometimes even increases performance when scaling a problem, which is its key feature.

2
Andrey Dik
Hat den Artikel Blood inheritance optimization (BIO) veröffentlicht
Blood inheritance optimization (BIO)

I present to you my new population optimization algorithm - Blood Inheritance Optimization (BIO), inspired by the human blood group inheritance system. In this algorithm, each solution has its own "blood type" that determines the way it evolves. Just as in nature where a child's blood type is inherited according to specific rules, in BIO new solutions acquire their characteristics through a system of inheritance and mutations.

3
Andrey Dik
Hat den Artikel Circle Search Algorithm (CSA) veröffentlicht
Circle Search Algorithm (CSA)

The article presents a new metaheuristic optimization Circle Search Algorithm (CSA) based on the geometric properties of a circle. The algorithm uses the principle of moving points along tangents to find the optimal solution, combining the phases of global exploration and local exploitation.

3
Andrey Dik
Hat den Artikel Royal Flush Optimization (RFO) veröffentlicht
Royal Flush Optimization (RFO)

The original Royal Flush Optimization algorithm offers a new approach to solving optimization problems, replacing the classic binary coding of genetic algorithms with a sector-based approach inspired by poker principles. RFO demonstrates how simplifying basic principles can lead to an efficient and practical optimization method. The article presents a detailed analysis of the algorithm and test results.

3
Andrey Dik
Hat den Artikel Dialectic Search (DA) veröffentlicht
Dialectic Search (DA)

The article introduces the dialectical algorithm (DA), a new global optimization method inspired by the philosophical concept of dialectics. The algorithm exploits a unique division of the population into speculative and practical thinkers. Testing shows impressive performance of up to 98% on low-dimensional problems and overall efficiency of 57.95%. The article explains these metrics and presents a detailed description of the algorithm and the results of experiments on different types of functions.

3
Andrey Dik
Hat den Artikel Time Evolution Travel Algorithm (TETA) veröffentlicht
Time Evolution Travel Algorithm (TETA)

Dies ist mein eigener Algorithmus. Der Artikel stellt den Time Evolution Travel Algorithm (TETA) vor, der vom Konzept der Paralleluniversen und Zeitströme inspiriert ist. Der Grundgedanke des Algorithmus ist, dass wir, obwohl Zeitreisen im herkömmlichen Sinne unmöglich sind, eine Abfolge von Ereignissen wählen können, die zu unterschiedlichen Realitäten führen.

Andrey Dik
Hat den Artikel Algorithmus für zyklische Parthenogenese (CPA) veröffentlicht
Algorithmus für zyklische Parthenogenese (CPA)

Der Artikel befasst sich mit einem neuen Populationsoptimierungsalgorithmus – dem Cyclic Parthenogenesis Algorithm (CPA), der von der einzigartigen Fortpflanzungsstrategie von Blattläusen inspiriert ist. Der Algorithmus kombiniert zwei Fortpflanzungsmechanismen – Parthenogenese und sexuelle Fortpflanzung – und nutzt auch die koloniale Struktur der Population mit der Möglichkeit der Migration zwischen Kolonien. Die wichtigsten Merkmale des Algorithmus sind der adaptive Wechsel zwischen verschiedenen Fortpflanzungsstrategien und ein System des Informationsaustauschs zwischen den Kolonien durch den Flugmechanismus.

Andrey Dik
Hat den Artikel Funktionen zur Aktivierung von Neuronen während des Trainings: Der Schlüssel zur schnellen Konvergenz? veröffentlicht
Funktionen zur Aktivierung von Neuronen während des Trainings: Der Schlüssel zur schnellen Konvergenz?

In diesem Artikel wird die Interaktion verschiedener Aktivierungsfunktionen mit Optimierungsalgorithmen im Rahmen des Trainings neuronaler Netze untersucht. Besonderes Augenmerk wird auf den Vergleich zwischen dem klassischen ADAM und seiner Populationsversion gelegt, wenn mit einer breiten Palette von Aktivierungsfunktionen gearbeitet wird, einschließlich der oszillierenden ACON- und Snake-Funktionen. Durch die Verwendung einer minimalistischen MLP-Architektur (1-1-1) und eines einzigen Trainingsbeispiels wird der Einfluss der Aktivierungsfunktionen auf die Optimierung von anderen Faktoren getrennt. Der Artikel schlägt einen Ansatz zur Verwaltung von Netzwerkgewichten durch die Grenzen von Aktivierungsfunktionen und einen Gewichtsreflexionsmechanismus vor, der es ermöglicht, Probleme mit Sättigung und Stagnation beim Training zu vermeiden.

Andrey Dik
Hat den Artikel Big Bang – Big Crunch (BBBC) Algorithmus veröffentlicht
Big Bang – Big Crunch (BBBC) Algorithmus

Der Artikel stellt die Methode Big Bang – Big Crunch vor, die aus zwei Schlüsselphasen besteht: zyklische Erzeugung von Zufallspunkten und deren Komprimierung zur optimalen Lösung. Dieser Ansatz kombiniert Erkundung und Verfeinerung und ermöglicht es uns, schrittweise bessere Lösungen zu finden und neue Optimierungsmöglichkeiten zu erschließen.

Andrey Dik
Andrey Dik
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
Andrey Dik
Andrey Dik
🎉 New Year’s Offer! 🎉

Dive into a world of new possibilities with our unique product, the MT5 Optimization Booster! For just two weeks, you have the chance to not only test all its features and benefits for free but also tackle your global optimization challenges!

✨ What awaits you?

🚀 Full access to the product's functionality
🎁 Unique opportunities that will help you achieve more
Don't miss the chance to make this New Year special! Click on the link https://www.mql5.com/en/blogs/post/760467 and start your free trial today!

Hurry up! This offer is valid for a limited time! 🎊
Andrey Dik
Andrey Dik
🎉 Новогоднее предложение! 🎉

Погрузитесь в мир новых возможностей с нашим уникальным продуктом MT5 Optimization Booster! Только в течение двух недель у вас есть шанс бесплатно протестировать все его функции и преимущества!

✨ Что вас ждет?
- 🚀 Полный доступ к функционалу продукта
- 🎁 Уникальные возможности, которые помогут вам достигать большего


Не упустите возможность сделать этот Новый год особенным! Переходите по ссылке https://www.mql5.com/ru/blogs/post/760459 и начните свое бесплатное тестирование уже сегодня!

Поторопитесь! Акция действует ограниченное время! 🎊
Andrey Dik
Special New Year Offer: 2 Weeks of Free Trial! ( file attached) ⬇️ Get full access to MT5 Optimization Booster for 14 days absolutely free What you get during the trial period: ✅ Complete unlimited functionality of the Booster ✅ Unlimited number of optimizations What is MT5 Optimization Booster...
Andrey Dik
Специальное новогоднее предложение: 2 недели бесплатного тестирования Получите полный доступ к MT5 Optimization Booster на 14 дней совершенно бесплатно (файл в прикрепе...
Andrey Dik
Hat den Artikel Black Hole Algorithmus (BHA) veröffentlicht
Black Hole Algorithmus (BHA)

Der Black Hole Algorithm (BHA) nutzt die Prinzipien der Schwerkraft von Schwarzen Löchern, um Lösungen zu optimieren. In diesem Artikel werden wir uns ansehen, wie BHA die besten Lösungen findet und dabei lokale Extreme vermeidet, und warum dieser Algorithmus zu einem leistungsstarken Werkzeug für die Lösung komplexer Probleme geworden ist. Erfahren Sie, wie einfache Ideen zu beeindruckenden Ergebnissen in der Welt der Optimierung führen können.

Andrey Dik
Hat den Artikel Artificial Tribe Algorithm (ATA) veröffentlicht
Artificial Tribe Algorithm (ATA)

In diesem Artikel werden die wichtigsten Komponenten und Innovationen des ATA-Optimierungsalgorithmus ausführlich besprochen. Dabei handelt es sich um eine evolutionäre Methode mit einem einzigartigen dualen Verhaltenssystem, das sich je nach Situation anpasst. ATA kombiniert individuelles und soziales Lernen und nutzt Crossover für Erkundungen und Migration, um Lösungen zu finden, wenn sie in lokalen Optima stecken.

Andrey Dik
Hat den Artikel Expert Advisor auf der Grundlage des universellen MLP-Approximators veröffentlicht
Expert Advisor auf der Grundlage des universellen MLP-Approximators

In diesem Artikel wird eine einfache und zugängliche Methode zur Verwendung eines neuronalen Netzwerks in einem Handels-EA vorgestellt, für die keine tiefgreifenden Kenntnisse des maschinellen Lernens erforderlich sind. Die Methode eliminiert die Zielfunktionsnormalisierung und überwindet die Probleme der „Gewichtsexplosion“ und des „Netzwerkstaus“, indem sie intuitives Training und visuelle Kontrolle der Ergebnisse bietet.

Andrey Dik
Hat den Artikel Population ADAM (Adaptive Moment Estimation) veröffentlicht
Population ADAM (Adaptive Moment Estimation)

Der Artikel stellt die Umwandlung des bekannten und beliebten ADAM-Gradientenoptimierungsverfahrens in einen Populationsalgorithmus und dessen Modifikation durch die Einführung hybrider Individuen vor. Der neue Ansatz ermöglicht die Schaffung von Agenten, die Elemente erfolgreicher Entscheidungen mit Hilfe von Wahrscheinlichkeitsverteilungen kombinieren. Die wichtigste Innovation ist die Bildung hybrider Populationen, die adaptiv Informationen aus den vielversprechendsten Lösungen sammeln und so die Effizienz der Suche in komplexen mehrdimensionalen Räumen erhöhen.