Andrey Dik
Andrey Dik
  • Information
11+ Jahre
Erfahrung
4
Produkte
107
Demoversionen
15
Jobs
0
Signale
0
Abonnenten
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Hat den Artikel Atmosphere Clouds Model Optimization (ACMO): Die Praxis veröffentlicht
Atmosphere Clouds Model Optimization (ACMO): Die Praxis

In diesem Artikel werden wir uns weiter mit der Implementierung des ACMO-Algorithmus (Atmospheric Cloud Model Optimization) beschäftigen. Wir werden insbesondere zwei Schlüsselaspekte erörtern: die Bewegung von Wolken in Tiefdruckgebiete und die Regensimulation, einschließlich der Initialisierung von Tröpfchen und ihrer Verteilung auf die Wolken. Wir werden uns auch mit anderen Methoden befassen, die eine wichtige Rolle bei der Verwaltung des Zustands von Wolken und der Gewährleistung ihrer Interaktion mit der Umwelt spielen.

Andrey Dik
Hat den Artikel Atmosphere Clouds Model Optimization (ACMO): Theorie veröffentlicht
Atmosphere Clouds Model Optimization (ACMO): Theorie

Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.

Andrey Dik
MT5 Optimization Booster Trading News The results of MLP neural network optimization in the standard MT5 optimizer using MT5 Optimization Booster . The booster perfectly identifies promising areas of search and focuses its attention on these areas...
Andrey Dik
Andrey Dik
An example of training a neural network using the MT5 Optimization Booster product. The nature of the balance curve on the OOS corresponds to the nature of the curve in the training area.
Andrey Dik
Hat den Artikel Archery-Algorithmus (AA) veröffentlicht
Archery-Algorithmus (AA)

Der Artikel wirft einen detaillierten Blick auf den vom Bogenschießen inspirierten Optimierungsalgorithmus, wobei der Schwerpunkt auf der Verwendung der Roulette-Methode als Mechanismus zur Auswahl vielversprechender Bereiche für „Pfeile“ liegt. Die Methode ermöglicht es, die Qualität der Lösungen zu bewerten und die vielversprechendsten Positionen für weitere Untersuchungen auszuwählen.

Andrey Dik
MT5 Optimization Booster Product Guide The product is designed to enhance the functionality of the standard tester...
Andrey Dik
Hat den Artikel Optimierung mit der bakteriellen Chemotaxis (BCO) veröffentlicht
Optimierung mit der bakteriellen Chemotaxis (BCO)

Der Artikel stellt die ursprüngliche Version des Algorithmus zur Optimierung der bakteriellen Chemotaxis (BCO) und seine modifizierte Version vor. Wir werden uns alle Unterschiede genauer ansehen, mit besonderem Augenmerk auf die neue Version von BCOm, die den Mechanismus der bakteriellen Bewegung vereinfacht, die Abhängigkeit von der Positionsgeschichte verringert und einfachere mathematische Verfahren verwendet als die rechenintensive Originalversion. Wir werden auch die Tests durchführen und die Ergebnisse zusammenfassen.

Andrey Dik
Dear traders and investors! We present to you the MT5 Optimization Booster – an innovative product that will revolutionize your optimization experience on MetaTrader 5! The MT5 Optimization Booster is designed to enhance the capabilities of the standard optimizer...
Andrey Dik
Уважаемые трейдеры и инвесторы! Представляем вам MT5 Optimization Booster – инновационный продукт, который перевернет ваши представления об оптимизации на MetaTrader 5! MT5 Optimization Booster предназначен для расширения возможностей штатного оптимизатора...
Andrey Dik
Hat den Artikel Tabu Search (TS) veröffentlicht
Tabu Search (TS)

Der Artikel behandelt den Algorithmus Tabu Search, eine der ersten und bekanntesten metaheuristischen Methoden. Wir werden die Funktionsweise des Algorithmus im Detail durchgehen, beginnend mit der Auswahl einer Anfangslösung und der Untersuchung benachbarter Optionen, wobei der Schwerpunkt auf der Verwendung einer Tabu-Liste liegt. Der Artikel behandelt die wichtigsten Aspekte des Algorithmus und seine Merkmale.

Andrey Dik
Hat den Artikel Künstlicher Algenalgorithmus (AAA) veröffentlicht
Künstlicher Algenalgorithmus (AAA)

Der Artikel befasst sich mit dem Künstlichen Algenalgorithmus (AAA), der auf den für Mikroalgen charakteristischen biologischen Prozessen beruht. Der Algorithmus umfasst eine Spiralbewegung, einen evolutionären Prozess und eine Anpassung, die es ihm ermöglicht, Optimierungsprobleme zu lösen. Der Artikel bietet eine eingehende Analyse der Funktionsprinzipien der AAA und ihres Potenzials für die mathematische Modellierung, wobei die Verbindung zwischen Natur und algorithmischen Lösungen hervorgehoben wird.

Andrey Dik
Hat den Artikel Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO) veröffentlicht
Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO)

In diesem Artikel machen wir uns mit dem Algorithmus Anarchic Society Optimization (Anarchischen Gesellschaftsoptimierung, ASO) vertraut und erörtern, wie ein Algorithmus, der auf dem irrationalen und abenteuerlichen Verhalten von Teilnehmern in einer anarchischen Gesellschaft (einem anomalen System sozialer Interaktion, das frei von zentraler Macht und verschiedenen Arten von Hierarchien ist) basiert, in der Lage ist, den Lösungsraum zu erkunden und die Fallen des lokalen Optimums zu vermeiden. Der Artikel stellt eine einheitliche ASO-Struktur vor, die sowohl auf kontinuierliche als auch auf diskrete Probleme anwendbar ist.

Andrey Dik
Hat den Artikel Algorithmus zur Optimierung der Migration der Tiere (AMO) veröffentlicht
Algorithmus zur Optimierung der Migration der Tiere (AMO)

Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.

Andrey Dik
Hat den Artikel Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse veröffentlicht
Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse

In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.

Andrey Dik
Hat den Artikel Künstlicher Bienenstock-Algorithmus (ABHA): Theorie und Methoden veröffentlicht
Künstlicher Bienenstock-Algorithmus (ABHA): Theorie und Methoden

In diesem Artikel geht es um den 2009 entwickelten Artificial Bee Hive Algorithm (ABHA). Der Algorithmus ist auf die Lösung kontinuierlicher Optimierungsprobleme ausgerichtet. Wir werden uns ansehen, wie ABHA sich vom Verhalten eines Bienenvolkes inspirieren lässt, in dem jede Biene eine einzigartige Aufgabe hat, die ihr hilft, Ressourcen effizienter zu finden.

Andrey Dik
Hat den Artikel Adaptive Social Behavior Optimization (ASBO): Zweiphasige Entwicklung veröffentlicht
Adaptive Social Behavior Optimization (ASBO): Zweiphasige Entwicklung

Wir beschäftigen uns weiterhin mit dem Thema des Sozialverhaltens von Lebewesen und dessen Auswirkungen auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden uns mit der zweiphasigen Entwicklung befassen, den Algorithmus testen und Schlussfolgerungen ziehen. So wie sich in der Natur eine Gruppe von Lebewesen zusammenschließt, um zu überleben, nutzt ASBO die Prinzipien des kollektiven Verhaltens, um komplexe Optimierungsprobleme zu lösen.

Andrey Dik
Hat den Artikel Adaptive Social Behavior Optimization (ASBO): Das Verfahren von Schwefel und Box-Muller veröffentlicht
Adaptive Social Behavior Optimization (ASBO): Das Verfahren von Schwefel und Box-Muller

Dieser Artikel bietet einen faszinierenden Einblick in die Welt des Sozialverhaltens lebender Organismen und dessen Einfluss auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden untersuchen, wie die in lebenden Gesellschaften beobachteten Prinzipien von Führung, Nachbarschaft und Kooperation die Entwicklung innovativer Optimierungsalgorithmen inspirieren.

Andrey Dik
Hat den Artikel Algorithmus für künstliche elektrische Felder (AEFA) veröffentlicht
Algorithmus für künstliche elektrische Felder (AEFA)

In diesem Artikel wird ein Algorithmus für ein künstliches elektrisches Feld (AEFA) vorgestellt, der durch das Coulombsche Gesetz der elektrostatischen Kraft inspiriert ist. Der Algorithmus simuliert elektrische Phänomene, um komplexe Optimierungsprobleme mit Hilfe geladener Teilchen und ihrer Wechselwirkungen zu lösen. AEFA weist im Zusammenhang mit anderen Algorithmen, die sich auf Naturgesetze beziehen, einzigartige Eigenschaften auf.

Andrey Dik
Hat den Artikel Nachbarschaftsübergreifende Suche (ANS) veröffentlicht
Nachbarschaftsübergreifende Suche (ANS)

Der Artikel zeigt das Potenzial des ANS-Algorithmus als einen wichtigen Schritt in der Entwicklung flexibler und intelligenter Optimierungsmethoden, die die Besonderheiten des Problems und die Dynamik der Umgebung im Suchraum berücksichtigen können.

Andrey Dik
Hat den Artikel Algorithmus zur chemischen Reaktionsoptimierung (CRO) (Teil II): Zusammenstellung und Ergebnisse veröffentlicht
Algorithmus zur chemischen Reaktionsoptimierung (CRO) (Teil II): Zusammenstellung und Ergebnisse

Im zweiten Teil werden wir die chemischen Operatoren in einem einzigen Algorithmus zusammenfassen und eine detaillierte Analyse seiner Ergebnisse präsentieren. Wir wollen herausfinden, wie die Methode der chemischen Reaktionsoptimierung (CRO) mit der Lösung komplexer Probleme bei Testfunktionen zurechtkommt.