Andrey Dik
Andrey Dik
  • Information
12+ Jahre
Erfahrung
5
Produkte
86
Demoversionen
15
Jobs
0
Signale
0
Abonnenten
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)

Der Artikel befasst sich mit einem interessanten, von der unbelebten Natur abgeleiteten Algorithmus - intelligente Wassertropfen (IWD), die den Prozess der Flussbettbildung simulieren. Die Ideen dieses Algorithmus ermöglichten es, den bisherigen Spitzenreiter der Bewertung - SDS - deutlich zu verbessern. Der neue Führende (modifizierter SDSm) befindet sich wie üblich im Anhang.

Andrey Dik
Andrey Dik
All my indicators published in the Market until today are now free!
Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)

In diesem Artikel werden wir einen weiteren Optimierungsalgorithmus betrachten, der von der unbelebten Natur inspiriert ist - den CSS-Algorithmus (Charged System Search, Suche geladener Systeme). In diesem Artikel wird ein neuer Optimierungsalgorithmus vorgestellt, der auf den Prinzipien der Physik und Mechanik beruht.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS)

Der Artikel behandelt die stochastische Diffusionssuche (SDS), einen sehr leistungsfähigen und effizienten Optimierungsalgorithmus, der auf den Prinzipien des Random Walk basiert. Der Algorithmus ermöglicht es, optimale Lösungen in komplexen mehrdimensionalen Räumen zu finden, wobei er sich durch eine hohe Konvergenzgeschwindigkeit und die Fähigkeit auszeichnet, lokale Extrema zu vermeiden.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC)

Der Artikel befasst sich mit einem Algorithmus aus der MEC-Familie, dem Simple Mind Evolutionary Computation Algorithmus (Simple MEC, SMEC). Der Algorithmus zeichnet sich durch die Schönheit seiner Idee und die Einfachheit seiner Umsetzung aus.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Shuffled Frog-Leaping Algorithmus (SFL) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Shuffled Frog-Leaping Algorithmus (SFL)

Der Artikel enthält eine detaillierte Beschreibung des Shuffled-Frog-Leaping-Algorithmus (SFL) und seiner Fähigkeiten bei der Lösung von Optimierungsproblemen. Der SFL-Algorithmus ist vom Verhalten der Frösche in ihrer natürlichen Umgebung inspiriert und bietet einen neuen Ansatz zur Funktionsoptimierung. Der SFL-Algorithmus ist ein effizientes und flexibles Werkzeug, das eine Vielzahl von Datentypen verarbeiten und optimale Lösungen erzielen kann.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)

Der Artikel beschreibt die Prinzipien, Methoden und Möglichkeiten der Anwendung des elektromagnetischen Algorithmus bei verschiedenen Optimierungsproblemen. Der EM-Algorithmus ist ein effizientes Optimierungswerkzeug, das mit großen Datenmengen und mehrdimensionalen Funktionen arbeiten kann.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Saplings Sowing and Growing up (SSG) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Saplings Sowing and Growing up (SSG)

Der Algorithmus Saplings Sowing and Growing up (SSG, Setzen, Säen und Wachsen) wurde von einem der widerstandsfähigsten Organismen der Erde inspiriert, der unter den verschiedensten Bedingungen überleben kann.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)

In diesem Artikel werde ich den Optimierungsalgorithmus Affen-Algorithmus (MA, Monkey Algorithmus) betrachten. Die Fähigkeit dieser Tiere, schwierige Hindernisse zu überwinden und die unzugänglichsten Baumkronen zu erreichen, bildete die Grundlage für die Idee des MA-Algorithmus.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA) veröffentlicht
Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA)

GSA ist ein von der unbelebten Natur inspirierter Populationsoptimierungsalgorithmus. Dank des in den Algorithmus implementierten Newton'schen Gravitationsgesetzes können wir dank der hohen Zuverlässigkeit der Modellierung der Interaktion physikalischer Körper den bezaubernden Tanz von Planetensystemen und Galaxienhaufen beobachten. In diesem Artikel möchte ich einen der interessantesten und originellsten Optimierungsalgorithmen vorstellen. Der Simulator für die Bewegung von Raumobjekten ist ebenfalls vorhanden.

Andrey Dik
Andrey Dik
AO Core is now available for MT4!
The product has been updated to version 1.6 (including for MT5), in which the already incredible search capabilities have become even cooler! Owners of purchased licenses for AO Core can always be sure that they have the best solution search thanks to the author's constant research in the field of optimization. Follow my news and read my articles, I wish you all success in all your endeavors!
Andrey Dik
Andrey Dik
AO Core:
1. Increased the speed of the library.
2. The scheme of checking for duplicates has been improved.
https://www.mql5.com/ru/market/product/92455
Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO) veröffentlicht
Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)

Die Strategie der Nahrungssuche des Bakteriums E. coli inspirierte die Wissenschaftler zur Entwicklung des BFO-Optimierungsalgorithmus. Der Algorithmus enthält originelle Ideen und vielversprechende Optimierungsansätze und ist es wert, weiter untersucht zu werden.

Andrey Dik
Andrey Dik
Новый продукт AO Core (основан на hybrid metaheuristic algorithm - HMA) - безграничные возможности оптимизации! Воспользуйтесь подпиской на 1 месяц за 30$, чтобы попробовать библиотеку а заодно и решить все Ваши самые сложные задачи оптимизации.
https://www.mql5.com/ru/market/product/92455
Andrey Dik
Hat den Artikel Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO) veröffentlicht
Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)

Die erstaunliche Fähigkeit von Unkräutern, unter verschiedensten Bedingungen zu überleben, wurde zur Idee für einen leistungsstarken Optimierungsalgorithmus. IWO (Invasive Weed Optimization) ist einer der besten Algorithmen unter den bisher geprüften.

Andrey Dik Hat ein Produkt angeboten
Bewertungen: 2
120.00 USD

AO Core ist das Herzstück des Optimierungsalgorithmus. Es handelt sich um eine Bibliothek, die auf dem HMA-Algorithmus (Hybrid Metaheuristic Algorithm) des Autors aufbaut. B eachten Sie das Produkt MT5 Optimierung Booster , das die Verwaltung des regulären MT5 Optimierers sehr einfach macht . Ein Beispiel für die Verwendung von AO Core wird in diesem Artikel beschrieben : https://www.mql5.com/ru/articles/14183 https://www.mql5.com/en/blogs/post/756510 Dieser hybride Algorithmus basiert auf einem

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA) veröffentlicht
Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)

In diesem Artikel werde ich den Fledermaus-Algorithmus (Bat-Algorithmus, BA) betrachten, der gute Konvergenz bei glatten Funktionen zeigt.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen Firefly-Algorithmus (FA) veröffentlicht
Algorithmen zur Optimierung mit Populationen Firefly-Algorithmus (FA)

In diesem Artikel werde ich die Optimierungsmethode des Firefly-Algorithmus (FA) betrachten. Dank der Änderung hat sich der Algorithmus von einem Außenseiter zu einem echten Tabellenführer entwickelt.