Andrey Dik
Andrey Dik
  • Information
12+ Jahre
Erfahrung
4
Produkte
107
Demoversionen
15
Jobs
0
Signale
0
Abonnenten
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Hat den Artikel Algorithmus einer chemischen Reaktionsoptimierung (CRO) (Teil I): Prozesschemie in der Optimierung veröffentlicht
Algorithmus einer chemischen Reaktionsoptimierung (CRO) (Teil I): Prozesschemie in der Optimierung

Im ersten Teil dieses Artikels werden wir in die Welt der chemischen Reaktionen eintauchen und einen neuen Ansatz zur Optimierung entdecken! Die chemische Reaktionsoptimierung (CRO) nutzt Prinzipien, die sich aus den Gesetzen der Thermodynamik ableiten, um effiziente Ergebnisse zu erzielen. Wir werden die Geheimnisse der Zersetzung, der Synthese und anderer chemischer Prozesse lüften, die die Grundlage für diese innovative Methode bilden.

Andrey Dik
Hat den Artikel Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm) veröffentlicht
Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm)

Hier werden wir die Entwicklung des ACS-Algorithmus betrachten: drei Änderungen zur Verbesserung der Konvergenzeigenschaften und der Effizienz des Algorithmus. Umwandlung eines der führenden Optimierungsalgorithmen. Von Matrixmodifikationen bis hin zu revolutionären Ansätzen zur Bevölkerungsbildung.

Andrey Dik
Hat den Artikel Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) veröffentlicht
Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)

Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.

Andrey Dik
Hat den Artikel Сode Lock Algorithmus (CLA) veröffentlicht
Сode Lock Algorithmus (CLA)

In diesem Artikel werden wir Zahlenschlösser (Code Locks) neu überdenken und sie von Sicherheitsmechanismen in Werkzeuge zur Lösung komplexer Optimierungsprobleme verwandeln. Entdecken Sie die Welt der Zahlenschlösser, die nicht als einfache Sicherheitsvorrichtungen betrachtet werden, sondern als Inspiration für einen neuen Ansatz zur Optimierung. Wir werden eine ganze Population von Zahlenschlössern (Locks) erstellen, wobei jedes Schloss eine einzigartige Lösung für das Problem darstellt. Wir werden dann einen Algorithmus entwickeln, der diese Schlösser „knackt“ und optimale Lösungen in einer Vielzahl von Bereichen findet, vom maschinellen Lernen bis zur Entwicklung von Handelssystemen.

Andrey Dik
Hat den Artikel Kometenschweif-Algorithmus (CTA) veröffentlicht
Kometenschweif-Algorithmus (CTA)

In diesem Artikel befassen wir uns mit der Optimierungsalgorithmus nach dem Kometenschweif (Comet Tail Optimization Algorithm, CTA), der sich von einzigartigen Weltraumobjekten inspirieren lässt - von Kometen und ihren beeindruckenden Schweifen, die sich bei der Annäherung an die Sonne bilden. Der Algorithmus basiert auf dem Konzept der Bewegung von Kometen und ihren Schweifen und ist darauf ausgelegt, optimale Lösungen für Optimierungsprobleme zu finden.

Andrey Dik
Hat den Artikel Schildkrötenpanzer-Evolutionsalgorithmus (TSEA) veröffentlicht
Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)

Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.

Andrey Dik
Hat den Artikel Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität veröffentlicht
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität

Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.

Andrey Dik
Hat den Artikel Brain Storm Optimierungsalgorithmus (Teil I): Clustering veröffentlicht
Brain Storm Optimierungsalgorithmus (Teil I): Clustering

In diesem Artikel befassen wir uns mit einer innovativen Optimierungsmethode namens BSO (Brain Storm Optimization), die von einem natürlichen Phänomen namens „Brainstorming“ inspiriert ist. Wir werden auch einen neuen Ansatz zur Lösung von multimodalen Optimierungsproblemen diskutieren, den die BSO-Methode anwendet. Es ermöglicht die Suche nach mehreren optimalen Lösungen, ohne dass die Anzahl der Teilpopulationen vorher festgelegt werden muss. Wir werden auch die Clustermethoden K-Means und K-Means++ betrachten.

Andrey Dik
Andrey Dik
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus veröffentlicht
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Vogelschwarm-Algorithmus (BSA) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Vogelschwarm-Algorithmus (BSA)

Der Artikel befasst sich mit dem vogelschwarmbasierten Algorithmus (BSA), der von den kollektiven Schwarminteraktionen der Vögel in der Natur inspiriert ist. Die unterschiedlichen Suchstrategien der BSA-Individuen, einschließlich des Wechsels zwischen Flucht-, Wachsamkeits- und Futtersuchverhalten, machen diesen Algorithmus vielschichtig. Es nutzt die Prinzipien der Vogelschwärme, der Kommunikation, der Anpassungsfähigkeit, des Führens und Folgens, um effizient optimale Lösungen zu finden.

Andrey Dik
Hat den Artikel Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen veröffentlicht
Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen

In diesem Artikel werden wir uns den Mersenne-Twister-Zufallszahlengenerator ansehen und ihn mit dem Standardgenerator in MQL5 vergleichen. Wir werden auch herausfinden, welchen Einfluss die Qualität des Zufallszahlengenerators auf die Ergebnisse der Optimierungsalgorithmen hat.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)

Der Wal-Optimierungsalgorithmus (WOA) ist ein metaheuristischer Algorithmus, der durch das Verhalten und die Jagdstrategien von Buckelwalen inspiriert wurde. Die Hauptidee von WOA ist die Nachahmung der so genannten Fressmethode „Blasennetz“, bei der Wale Blasen um ihre Beute herum erzeugen und sie dann in einer spiralförmigen Bewegung angreifen.

Andrey Dik
Hat den Artikel Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen veröffentlicht
Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen

Hier tauchen wir in die Welt der Hybridisierung von Optimierungsalgorithmen ein, indem wir uns drei Haupttypen ansehen: Strategiemischung, sequentielle und parallele Hybridisierung. Wir werden eine Reihe von Experimenten durchführen, in denen wir die relevanten Optimierungsalgorithmen kombinieren und testen.

Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil II) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil II)

Wir setzen unser Experiment fort, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Forschungsergebnisse werden vorgelegt.

Andrey Dik
AO Core Чтобы обеспечить самооптимизацию советника для реализации любых требуемых возможностей и функциональностей, используется схема, представленная на рисунке 1. На временной шкале "История" советник позиционируется в точке "время сейчас", где принимается решение об оптимизации...
Andrey Dik
AO Core To ensure self-optimization of the advisor for implementing any required capabilities and functionalities, the scheme presented in Figure 1 is employed. On the "History" timeline, the advisor is positioned at the "time now" point where the optimization decision is made...
Andrey Dik
Hat den Artikel Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil I) veröffentlicht
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil I)

In diesem Artikel wird ein einzigartiges Experiment vorgestellt, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Die Arbeit in dieser Richtung wird weitere Erkenntnisse darüber liefern, welche spezifischen Algorithmen ihre Suche mit den vom Nutzer festgelegten Koordinaten als Ausgangspunkt erfolgreich fortsetzen können und welche Faktoren ihren Erfolg beeinflussen.

Andrey Dik
Hat den Artikel Die Basisklasse der Populationsalgorithmen als Rückgrat einer effizienten Optimierung veröffentlicht
Die Basisklasse der Populationsalgorithmen als Rückgrat einer effizienten Optimierung

Der Artikel präsentiert einen einzigartigen Forschungsversuch, eine Vielzahl von Populationsalgorithmen in einer einzigen Klasse zu kombinieren, um die Anwendung von Optimierungsmethoden zu vereinfachen. Dieser Ansatz eröffnet nicht nur Möglichkeiten für die Entwicklung neuer Algorithmen, einschließlich hybrider Varianten, sondern schafft auch eine universelle Basis-Testumgebung. Dieser Stand wird zu einem wichtigen Instrument für die Auswahl des optimalen Algorithmus für eine bestimmte Aufgabe.

Andrey Dik
Hat den Artikel Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb veröffentlicht
Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb

Der Artikel behandelt die praktischen Aspekte der Verwendung von Optimierungsalgorithmen, um die besten EA-Parameter im laufenden Betrieb zu finden, sowie die Virtualisierung von Handelsoperationen und EA-Logik. Der Artikel kann als Anleitung für die Implementierung von Optimierungsalgorithmen in einen EA verwendet werden.