Risikomodell für ein Portfolio unter Verwendung des Kelly-Kriteriums und der Monte-Carlo-Simulation
Seit Jahrzehnten verwenden Händler die Formel des Kelly-Kriteriums, um den optimalen Anteil des Kapitals für eine Investition oder eine Wette zu bestimmen, um das langfristige Wachstum zu maximieren und gleichzeitig das Risiko des Ruins zu minimieren. Das blinde Befolgen des Kelly-Kriteriums auf der Grundlage der Ergebnisse eines einzigen Backtests ist jedoch für einzelne Händler oft gefährlich, da beim Live-Handel der Handelsvorsprung im Laufe der Zeit abnimmt und die vergangene Leistung keine Vorhersage für das zukünftige Ergebnis ist. In diesem Artikel werde ich einen realistischen Ansatz für die Anwendung des Kelly-Kriteriums für die Risikoallokation eines oder mehrerer EAs in MetaTrader 5 vorstellen und dabei die Ergebnisse der Monte-Carlo-Simulation von Python einbeziehen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 5): Verbessern des Dashboards mit reaktionsschnellen Steuerelementen und Filterschaltflächen
In diesem Artikel erstellen wir Schaltflächen für die Filter von Währungspaar, Wichtigkeitsstufen, Zeitspannen und eine Abbruchoption, um die Kontrolle über das Dashboard zu verbessern. Diese Tasten sind so programmiert, dass sie dynamisch auf Nutzeraktionen reagieren und eine nahtlose Interaktion ermöglichen. Außerdem automatisieren wir ihr Verhalten, um Änderungen in Echtzeit auf dem Dashboard anzuzeigen. Dies verbessert die allgemeine Funktionsweise, Mobilität und Reaktionsfähigkeit des Panels.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VIII): Das Analytics Panel
Heute befassen wir uns mit dem Einbinden nützlicher Handelsmetriken in ein spezielles Fenster, das in den Admin Panel EA integriert ist. Diese Diskussion konzentriert sich auf die Implementierung von MQL5 zur Entwicklung des „Analytics Panel“ und hebt den Wert der Daten hervor, die es den Handelsadministratoren liefert. Die Auswirkungen sind weitgehend lehrreich, da aus dem Entwicklungsprozess wertvolle Lehren gezogen werden, von denen sowohl angehende als auch erfahrene Entwickler profitieren. Diese Funktion zeigt die grenzenlosen Möglichkeiten, die diese Entwicklungsreihe für die Ausstattung von Handelsmanagern mit fortschrittlichen Softwaretools bietet. Darüber hinaus werden wir die Implementierung der Klassen PieChart und ChartCanvas als Teil der kontinuierlichen Erweiterung der Funktionen des Trading Administrator-Panels untersuchen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard
Dieser Artikel erweitert unser Wirtschaftskalender-Dashboard durch die Implementierung von Echtzeit-Nachrichten-Updates, um Marktinformationen aktuell und umsetzbar zu halten. Wir integrieren Techniken zum Abrufen von Live-Daten in MQL5, um Ereignisse auf dem Dashboard kontinuierlich zu aktualisieren und die Reaktionsfähigkeit der Schnittstelle zu verbessern. Dieses Update stellt sicher, dass wir direkt über das Dashboard auf die neuesten Wirtschaftsnachrichten zugreifen können, um unsere Handelsentscheidungen auf der Grundlage der aktuellsten Daten zu optimieren.
Automatisieren von Handelsstrategien in MQL5 (Teil 1): Das Profitunity System (Trading Chaos von Bill Williams)
In diesem Artikel untersuchen wir das Profitunity System von Bill Williams, indem wir seine Kernkomponenten und seinen einzigartigen Ansatz für den Handel im Marktchaos aufschlüsseln. Wir führen die Leser durch die Implementierung des Systems in MQL5 und konzentrieren uns dabei auf die Automatisierung von Schlüsselindikatoren und Einstiegs-/Ausstiegssignalen. Schließlich testen und optimieren wir die Strategie und geben Einblicke in ihre Leistung in verschiedenen Marktszenarien.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VII): Vertrauenswürdiger Nutzer, Wiederherstellung und Kryptografie
Sicherheitsabfragen, wie die, die jedes Mal ausgelöst werden, wenn Sie den Chart aktualisieren, ein neues Paar zum Chat mit dem Admin Panel EA hinzufügen oder das Terminal neu starten, können lästig werden. In dieser Diskussion werden wir eine Funktion untersuchen und implementieren, die die Anzahl der Anmeldeversuche verfolgt, um einen vertrauenswürdigen Nutzer zu identifizieren. Nach einer bestimmten Anzahl von Fehlversuchen geht die Anwendung zu einem erweiterten Anmeldeverfahren über, das auch die Wiederherstellung des Passcodes für Nutzer erleichtert, die ihn vergessen haben. Außerdem werden wir uns damit beschäftigen, wie Kryptographie effektiv in das Admin Panel integriert werden kann, um die Sicherheit zu erhöhen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit
In diesem Artikel implementieren wir Filter in das MQL5-Wirtschaftskalender-Dashboard, um die Anzeige von Nachrichtenereignissen nach Währung, Bedeutung und Zeit zu verfeinern. Wir erstellen zunächst Filterkriterien für jede Kategorie und integrieren diese dann in das Dashboard, um nur relevante Ereignisse anzuzeigen. Schließlich stellen wir sicher, dass jeder Filter dynamisch aktualisiert wird, um Händlern gezielte wirtschaftliche Erkenntnisse in Echtzeit zu liefern.
Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Das Panel zur Handelsverwaltung (II)
In diesem Artikel erweitern wir das Trade Management Panel unseres multifunktionalen Admin Panels. Wir führen eine leistungsstarke Hilfsfunktion ein, die den Code vereinfacht und die Lesbarkeit, Wartbarkeit und Effizienz verbessert. Wir zeigen Ihnen auch, wie Sie zusätzliche Schaltflächen nahtlos integrieren und die Nutzeroberfläche erweitern können, um ein breiteres Spektrum von Handelsaufgaben zu bewältigen. Ob es um die Verwaltung von Positionen, die Anpassung von Aufträgen oder die Vereinfachung von Nutzerinteraktionen geht, dieser Leitfaden hilft Ihnen bei der Entwicklung eines robusten, nutzerfreundlichen Trade Management Panels.
Handel mit dem MQL5 Wirtschaftskalender (Teil 2): Erstellen eines News Dashboard Panels
In diesem Artikel erstellen wir ein praktisches Nachrichten-Dashboard-Panel mit dem MQL5-Wirtschaftskalender, um unsere Handelsstrategie zu verbessern. Wir beginnen mit der Gestaltung des Layouts und konzentrieren uns dabei auf Schlüsselelemente wie Ereignisnamen, Wichtigkeit und Zeitplanung, bevor wir mit der Einrichtung in MQL5 beginnen. Schließlich implementieren wir ein Filtersystem, das nur die relevantesten Nachrichten anzeigt und den Händlern einen schnellen Zugang zu wichtigen wirtschaftlichen Ereignissen ermöglicht.
Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme
Der Artikel befasst sich mit der Entwicklung eines quanteninspirierten Handelssystems, das von einem Python-Prototyp zu einer MQL5-Implementierung für den realen Handel übergeht. Das System nutzt die Prinzipien der Quanteninformatik wie Überlagerung und Verschränkung, um Marktzustände zu analysieren, obwohl es auf klassischen Computern mit Quantensimulatoren läuft. Zu den wichtigsten Merkmalen gehören ein Drei-Qubit-System zur gleichzeitigen Analyse von acht Marktzuständen, 24-Stunden-Rückblicke und sieben technische Indikatoren für die Marktanalyse. Auch wenn die Genauigkeitsraten bescheiden erscheinen mögen, bieten sie in Verbindung mit geeigneten Risikomanagementstrategien einen erheblichen Vorteil.
Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Schnittstelle für mehrere Funktionen (I)
Die Rolle des Handelsadministrators geht über die reine Telegram-Kommunikation hinaus; er kann auch verschiedene Kontrolltätigkeiten ausüben, einschließlich Auftragsmanagement, Positionsverfolgung und Schnittstellenanpassung. In diesem Artikel geben wir praktische Einblicke in die Erweiterung unseres Programms zur Unterstützung mehrerer Funktionalitäten in MQL5. Dieses Update zielt darauf ab, die Beschränkung des aktuellen Admin Panels zu überwinden, das sich in erster Linie auf die Kommunikation konzentriert, und ermöglicht es, ein breiteres Spektrum von Aufgaben zu bewältigen.
Künstlicher Algenalgorithmus (AAA)
Der Artikel befasst sich mit dem Künstlichen Algenalgorithmus (AAA), der auf den für Mikroalgen charakteristischen biologischen Prozessen beruht. Der Algorithmus umfasst eine Spiralbewegung, einen evolutionären Prozess und eine Anpassung, die es ihm ermöglicht, Optimierungsprobleme zu lösen. Der Artikel bietet eine eingehende Analyse der Funktionsprinzipien der AAA und ihres Potenzials für die mathematische Modellierung, wobei die Verbindung zwischen Natur und algorithmischen Lösungen hervorgehoben wird.
Methoden von William Gann (Teil I): Erstellen des Gann Angles-Indikators
Was ist das Wesen der Gann-Theorie? Wie werden Gann-Winkel konstruiert? Wir werden den Gann Angles-Indikator für MetaTrader 5 erstellen.
Algorithmus zur Optimierung der Migration der Tiere (AMO)
Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.
Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse
In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 16): Auswirkungen unterschiedlicher Kursverläufe auf die Testergebnisse
Es wird erwartet, dass der in der Entwicklung befindliche EA gute Ergebnisse beim Handel mit verschiedenen Brokern zeigt. Aber im Moment haben wir die Kurse eines MetaQuotes-Demokontos verwendet, um Tests durchzuführen. Lassen Sie uns sehen, ob unser EA bereit ist, auf einem Handelskonto mit anderen Kursen zu arbeiten, als die, die wir während der Tests und der Optimierung verwendet haben.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 15): Den EA für den realen Handel vorbereiten
Wenn wir uns allmählich einem fertigen EA nähern, müssen wir auf Aspekte achten, die in der Phase des Testens einer Handelsstrategie zweitrangig erscheinen, aber wichtig werden, wenn wir zum echten Handel übergehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 14): Adaptive Volumenänderung im Risikomanager
Der zuvor entwickelte Risikomanager enthielt nur grundlegende Funktionen. Versuchen wir, mögliche Wege zu seiner Entwicklung zu betrachten, die es uns ermöglichen, die Handelsergebnisse zu verbessern, ohne die Logik der Handelsstrategien zu beeinträchtigen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 1): Beherrschung der Funktionen des MQL5-Wirtschaftskalenders
In diesem Artikel untersuchen wir, wie der MQL5-Wirtschaftskalender für den Handel verwendet werden kann, indem wir zunächst seine Kernfunktionen verstehen. Anschließend implementieren wir wichtige Funktionen des Wirtschaftskalenders in MQL5, um relevante Nachrichtendaten für Handelsentscheidungen zu extrahieren. Abschließend zeigen wir auf, wie diese Informationen genutzt werden können, um Handelsstrategien effektiv zu verbessern.
Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 2): Reaktionsfähigkeit von Schaltflächen hinzufügen
In diesem Artikel konzentrieren wir uns darauf, unser statisches MQL5-Dashboard-Panel in ein interaktives Tool zu verwandeln, indem wir die Reaktionsfähigkeit von Schaltflächen aktivieren. Wir untersuchen, wie die Funktionalität der GUI-Komponenten automatisiert werden kann, um sicherzustellen, dass sie angemessen auf Nutzerklicks reagieren. Am Ende des Artikels haben wir eine dynamische Schnittstelle eingerichtet, die das Engagement der Nutzer und die Handelserfahrung verbessert.
Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (II)
Die Zahl der Strategien, die in einen Expert Advisor integriert werden können, ist praktisch unbegrenzt. Jede zusätzliche Strategie erhöht jedoch die Komplexität des Algorithmus. Durch die Einbeziehung mehrerer Strategien kann sich ein Expert Advisor besser an unterschiedliche Marktbedingungen anpassen, was seine Rentabilität erhöhen kann. Heute werden wir uns mit der Implementierung von MQL5 für eine der bekannten, von Richard Donchian entwickelten Strategien befassen, da wir die Funktionalität unseres Trend Constraint Expert weiter verbessern wollen.
Erstellen eines MQL5 Expert Advisors basierend auf der Strategie „Daily Range Breakout“
In diesem Artikel erstellen wir einen MQL5 Expert Advisor auf Basis der Daily Range Breakout Strategie. Wir behandeln die wichtigsten Konzepte der Strategie, entwerfen den EA-Blaupause, und implementieren die Breakout-Logik in MQL5. Schließlich werden Techniken für das Backtesting und die Optimierung des EA erforscht, um seine Effektivität zu maximieren.
MetaTrader 5 unter macOS
Wir bieten ein spezielles Installationsprogramm für die MetaTrader 5 Handelsplattform auf macOS. Es handelt sich um einen vollwertigen Assistenten, mit dem Sie die Anwendung nativ installieren können. Das Installationsprogramm führt alle erforderlichen Schritte aus: Es identifiziert Ihr System, lädt die neueste Wine-Version herunter und installiert sie, konfiguriert sie und installiert dann MetaTrader darin. Alle Schritte werden in einem automatischen Modus ausgeführt, und Sie können die Plattform sofort nach der Installation nutzen.
Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 1): Einrichten des Panels
In diesem Artikel erstellen wir ein interaktives Handels-Dashboard mit der Klasse Controls in MQL5, das zur Rationalisierung von Handelsvorgängen dient. Das Panel enthält einen Titel, Navigationsschaltflächen für Handel, Schließen und Informationen sowie spezielle Aktionsschaltflächen für die Ausführung von Geschäften und die Verwaltung von Positionen. Am Ende dieses Artikels werden Sie über ein Grundgerüst verfügen, das Sie in den nächsten Kapiteln weiter ausbauen können.
Datenwissenschaft und ML (Teil 31): CatBoost AI-Modelle für den Handel verwenden
CatBoost-KI-Modelle haben in letzter Zeit aufgrund ihrer Vorhersagegenauigkeit, Effizienz und Robustheit gegenüber verstreuten und schwierigen Datensätzen in der Community des maschinellen Lernens stark an Popularität gewonnen. In diesem Artikel werden wir im Detail erörtern, wie man diese Art von Modellen in einem Versuch, den Forex-Markt zu schlagen zu implementieren.
Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs(II)-LoRA-Tuning entwickeln und testen
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Wie man ein Handelsjournal mit MetaTrader und Google-Tabellen erstellt
Erstellen eines Handelsjournals mit MetaTrader und Google-Tabellen! Sie lernen, wie Sie Ihre Handelsdaten über HTTP POST synchronisieren und über HTTP-Anfragen abrufen können. Am Ende haben Sie ein Handelsjournal, das Ihnen hilft, Ihre Geschäfte effektiv und effizient zu überblicken.
Datenwissenschaft und ML(Teil 30): Das Power-Paar für die Vorhersage des Aktienmarktes, Convolutional Neural Networks (CNNs) und Recurrent Neural Networks (RNNs)
In diesem Artikel untersuchen wir die dynamische Integration von Convolutional Neural Networks (CNNs) und Recurrent Neural Networks (RNNs) in der Börsenprognose. Nutzen wir die Fähigkeit von CNNs, Muster zu extrahieren, und die Fähigkeit der RNNs, sequentielle Daten zu verarbeiten. Wir wollen sehen, wie diese leistungsstarke Kombination die Genauigkeit und Effizienz von Handelsalgorithmen verbessern kann.
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)
In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
Beispiel für stochastische Optimierung und optimale Kontrolle
Dieser Expert Advisor mit dem Namen SMOC (steht für Stochastic Model Optimal Control) ist ein einfaches Beispiel für ein fortschrittliches algorithmisches Handelssystem für MetaTrader 5. Es verwendet eine Kombination aus technischen Indikatoren, modellprädiktiver Steuerung und dynamischem Risikomanagement, um Handelsentscheidungen zu treffen. Der EA verfügt über adaptive Parameter, volatilitätsbasierte Positionsgrößen und Trendanalysen, um seine Leistung unter verschiedenen Marktbedingungen zu optimieren.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 12): Entwicklung eines Risikomanagers auf der Ebene des Eigenhandels
In dem EA, der hier entwickelt wird, haben wir bereits einen bestimmten Mechanismus zur Kontrolle des Drawdowns. Sie ist jedoch probabilistischer Natur, da sie auf den Ergebnissen von Tests mit historischen Preisdaten beruht. Daher kann der Drawdown manchmal die maximal erwarteten Werte übersteigen (wenn auch mit einer geringen Wahrscheinlichkeit). Versuchen wir, einen Mechanismus hinzuzufügen, der die garantierte Einhaltung der festgelegten Drawdown-Höhe gewährleistet.
Automatisieren von Handelsstrategien mit Parabolic SAR Trend Strategy in MQL5: Erstellung eines effektiven Expertenberaters
In diesem Artikel werden wir die Handelsstrategien mit der Parabolic SAR Strategie in MQL5 automatisieren: Erstellung eines effektiven Expertenberaters. Der EA wird auf der Grundlage der vom Parabolic SAR-Indikator identifizierten Trends Trades durchführen.
Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation
Der dynamische Multi-Pair Expert Advisor nutzt sowohl Korrelations- als auch inverse Korrelationsstrategien zur Optimierung der Handelsperformance. Durch die Analyse von Echtzeit-Marktdaten werden die Beziehungen zwischen Währungspaaren identifiziert und genutzt.
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (II)
Denken wir über einen unabhängigen Expert Advisor nach. Zuvor haben wir einen indikatorbasierten Expert Advisor besprochen, der auch mit einem unabhängigen Skript zum Zeichnen der Risiko- und Ertragsgeometrie zusammenarbeitet. Heute werden wir die Architektur eines MQL5 Expert Advisors besprechen, der alle Funktionen in einem Programm integriert.
Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels
In diesem Artikel wird unser Nachrichtenhandelsexperte mit der Eröffnung von Handelsgeschäften auf der Grundlage des in unserer Datenbank gespeicherten Wirtschaftskalenders beginnen. Außerdem werden wir die Expertengrafiken verbessern, um mehr relevante Informationen über bevorstehende Wirtschaftsereignisse anzuzeigen.
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)
In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette
Der EA-Entwicklungsplan umfasst mehrere Stufen, wobei die Zwischenergebnisse in der Datenbank gespeichert werden. Sie können von dort nur als Zeichenketten oder Zahlen wieder abgerufen werden, nicht als Objekte. Wir brauchen also eine Möglichkeit, die gewünschten Objekte im EA anhand der aus der Datenbank gelesenen Strings neu zu erstellen.
Risikomanager für den algorithmischen Handel
Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
Implementierung des Deus EA: Automatisierter Handel mit RSI und gleitenden Durchschnitten in MQL5
Dieser Artikel beschreibt die Schritte zur Implementierung des Deus EA, der auf den Indikatoren RSI und Gleitender Durchschnitt zur Steuerung des automatisierten Handels basiert.
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI
Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.