您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心
高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
MQL5 简介(第 15 部分):构建自定义指标的初学者指南(四)
在本文中,您将学习如何在 MQL5 中构建价格行为指标,重点关注低点 (L)、高点 (H)、更高的低点 (HL)、更高的高点 (HH)、更低的低点 (LL) 和更低的高点 (LH) 等关键点,以分析趋势。你还将学习如何识别溢价和折价区域,标记 50% 回撤位,以及如何使用风险回报比来计算利润目标。文章还介绍了如何根据趋势结构确定入场点、止损 (SL) 和止盈 (TP) 水平。
重新定义MQL5与MetaTrader 5指标
MQL5中一种创新的指标信息收集方法,使开发者能够向指标传递自定义输入参数以进行即时计算,从而实现了更灵活、更高效的数据分析。这种方法在算法交易中尤为实用,因为它能突破传统限制,增强对指标所处理信息的掌控力。
MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易
本文向初学者介绍如何构建一个 MQL5 EA 交易,该系统可以识别和交易经典的技术图表形态 —— 头肩顶形态。它涵盖了如何利用价格行为来检测形态,如何在图表上绘制形态,如何设置入场点、止损点和止盈点,以及如何根据形态自动执行交易。
您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形
比尔·威廉姆斯(Bill Williams)的分形是一个强有力的指标,在价格图标上初现时很容易被忽视。它出现得过于繁忙,大概也不够精锐。我们的靶标是配以由向导汇编的智能系统针对所有指标进行前向漫游测试,检验其在各种形态下能够取得怎样的成果,从而揭开该指标的面纱。
数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心
在一个充斥着杂乱且不可预测数据的世界里,识别有意义的形态可能颇具挑战性。在本文中,我们将探讨季节性分解,这是一种强力分析技术,有助于把数据拆分为关键成分:趋势、季节性形态、和噪声。以该途径拆解数据,我们能够揭示隐藏的洞见,并配以更清晰、更易解读的信息工作。