Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Informações
12+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Programação profissional de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)
Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)
Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)

Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos de espaço de estados
Redes neurais em trading: Modelos de espaço de estados

A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Injeção de informação global em canais independentes (InjectTST)
Redes neurais em trading: Injeção de informação global em canais independentes (InjectTST)

A maioria dos métodos modernos de previsão de séries temporais multimodais utiliza a abordagem de canais independentes, ignorando a dependência natural entre os diferentes canais de uma série temporal. Para melhorar a eficiência dos modelos, é fundamental utilizar equilibradamente duas abordagens: canais independentes e mistos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Resultados práticos do método TEMPO
Redes neurais em trading: Resultados práticos do método TEMPO

Damos continuidade à exploração do método TEMPO. Neste artigo, avaliaremos a eficácia prática das abordagens propostas com base em dados históricos reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais
Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais

Continuamos a analisar modelos de previsão de séries temporais. Neste artigo, proponho a apresentação de um algoritmo complexo baseado no uso de um modelo de linguagem previamente treinado.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos "leves" para previsão de séries temporais
Redes neurais em trading: Modelos "leves" para previsão de séries temporais

Os modelos leves para previsão de séries temporais oferecem alto desempenho utilizando uma quantidade mínima de parâmetros. Isso reduz o consumo de recursos computacionais e acelera a tomada de decisões. Ao mesmo tempo, eles alcançam qualidade de previsão comparável à de modelos mais complexos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini
Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini

Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Rede neural espaço-temporal (STNN)
Redes neurais em trading: Rede neural espaço-temporal (STNN)

Neste artigo, discutiremos o uso de transformações espaço-temporais para prever com eficácia o movimento futuro dos preços. Para melhorar a precisão das previsões numéricas na STNN, foi proposto um mecanismo de atenção contínua que permite ao modelo considerar melhor os aspectos relevantes dos dados.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelo de dupla atenção para previsão de tendências
Redes neurais em trading: Modelo de dupla atenção para previsão de tendências

Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Representação linear por partes de séries temporais
Redes neurais em trading: Representação linear por partes de séries temporais

Este artigo é um pouco diferente dos trabalhos anteriores desta série. Nele, discutiremos uma representação alternativa de séries temporais. A representação linear por partes de séries temporais é um método de aproximação de séries temporais usando funções lineares em pequenos intervalos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)
Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)

A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer
Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer

Os modelos baseados na arquitetura Transformer demonstram alta eficiência, mas seu uso é dificultado pelos altos custos de recursos, tanto na fase de treinamento quanto durante a utilização prática. Neste artigo, proponho conhecer algoritmos que permitem reduzir o uso de memória por esses modelos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais
Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)
Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Neste artigo, continuamos a implementação das abordagens do ATFNet — um modelo que adapta e combina os resultados de 2 blocos (frequencial e temporal) de previsão de séries temporais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo
Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)
Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)

Ao estudarmos o método FEDformer, abrimos uma porta para a área de representação de séries temporais no domínio da frequência. No novo artigo, continuaremos o tema iniciado, e analisaremos um método que permite não apenas conduzir uma análise, mas também prever estados futuros no domínio frequencial.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.