Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Informações
12+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Programação profissional de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Redes neurais no trading: Dupla clusterização de séries temporais (DUET)
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)

O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.

Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.

1
Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)

O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos híbridos de sequências de grafos (Conclusão)
Redes neurais em trading:  Modelos híbridos de sequências de grafos (Conclusão)

Seguimos o estudo de modelos híbridos de sequências de grafos (GSM++), que integram as vantagens de diferentes arquiteturas e garantem alta precisão na análise, além de uso eficiente dos recursos computacionais. Esses modelos identificam, de maneira eficaz, padrões ocultos, reduzindo o impacto do ruído de mercado e elevando a qualidade das previsões.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)

Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)
Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)
Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)
Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)

Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)
Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)

Continuamos a implementação das abordagens propostas pelos autores do framework FinCon. O FinCon é um sistema multiagente baseado em grandes modelos de linguagem (LLM). Hoje vamos implementar os módulos necessários e realizar testes abrangentes do modelo com dados históricos reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)
Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)

Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)
Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Agente com memória multinível (Conclusão)
Redes neurais em trading: Agente com memória multinível (Conclusão)

Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Agente com memória em camadas
Redes neurais em trading: Agente com memória em camadas

As abordagens de memória em camadas, que imitam os processos cognitivos humanos, permitem processar dados financeiros complexos e se adaptar a novos sinais, o que contribui para decisões de investimento mais eficazes em mercados dinâmicos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)
Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

No artigo anterior, exploramos os fundamentos teóricos e começamos a implementar as abordagens do framework Multitask-Stockformer, que combina wavelet transform e o modelo multitarefa Self-Attention. Damos continuidade à implementação dos algoritmos desse framework e avaliamos sua eficácia com dados históricos reais.