Dmitriy Gizlyk / Perfil
- Informações
|
12+ anos
experiência
|
0
produtos
|
0
versão demo
|
|
134
trabalhos
|
0
sinais
|
0
assinantes
|
Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.
Neste artigo, apresentamos um método de segmentação de objetos 3D baseado no Superpoint Transformer (SPFormer), que elimina a necessidade de agregação intermediária de dados. Isso acelera o processo de segmentação e melhora o desempenho do modelo.
A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
Apresentamos uma nova abordagem para a detecção de objetos por meio de hiper-redes. Uma hiper-rede de geração de pesos para o modelo subjacente, que nos permite levar em conta as peculiaridades do estado atual do mercado. Essa abordagem melhora a precisão da previsão, adaptando o modelo a diferentes condições de mercado.
Neste artigo, falaremos sobre os algoritmos que utilizam métodos de atenção para resolver tarefas de detecção de objetos em nuvens de pontos. A detecção de objetos em nuvens de pontos é de grande importância para diversas aplicações práticas.
Continuamos estudando algoritmos para extração de características de nuvens de pontos. Neste artigo, exploraremos mecanismos para aumentar a eficiência do método PointNet.
A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.
Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.
Apresentamos o método Transformer Vetorial Hierárquico (HiVT), desenvolvido para a previsão rápida e precisa de séries temporais multimodais.
Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.
Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.
A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
A maioria dos métodos modernos de previsão de séries temporais multimodais utiliza a abordagem de canais independentes, ignorando a dependência natural entre os diferentes canais de uma série temporal. Para melhorar a eficiência dos modelos, é fundamental utilizar equilibradamente duas abordagens: canais independentes e mistos.
Damos continuidade à exploração do método TEMPO. Neste artigo, avaliaremos a eficácia prática das abordagens propostas com base em dados históricos reais.
Continuamos a analisar modelos de previsão de séries temporais. Neste artigo, proponho a apresentação de um algoritmo complexo baseado no uso de um modelo de linguagem previamente treinado.
Os modelos leves para previsão de séries temporais oferecem alto desempenho utilizando uma quantidade mínima de parâmetros. Isso reduz o consumo de recursos computacionais e acelera a tomada de decisões. Ao mesmo tempo, eles alcançam qualidade de previsão comparável à de modelos mais complexos.
Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.