Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • Informações
12+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Programação profissional de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)

В этой статье мы шаг за шагом собираем ядро интеллектуальной модели TimeFound, адаптированной под реальные задачи прогнозирования временных рядов. Если вас интересует практическая реализация нейросетевых патчинг-алгоритмов в MQL5 — вы точно по адресу.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.

Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)

Mantis — универсальный инструмент для глубокого анализа временных рядов, гибко масштабируемый под любые финансовые сценарии. Узнайте, как сочетание патчинга, локальных свёрток и кросс-внимания позволяет получить высокоточную интерпретацию рыночных паттернов.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)
Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)

Conheça o Mantis, um modelo fundamental leve para classificação de séries temporais baseado em Transformer, com pré-treinamento contrastivo e atenção híbrida, que garantem precisão recorde e escalabilidade.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)
Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)

Este artigo permitirá que você veja como o Mamba4Cast transforma a teoria em um algoritmo de trading funcional e prepara o terreno para seus próprios experimentos. Não perca a oportunidade de obter um espectro completo de conhecimento e inspiração para o desenvolvimento da sua própria estratégia.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)
Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)

Damos continuidade ao conhecimento do framework Mamba4Cast. E hoje vamos nos aprofundar na implementação prática das abordagens propostas. O Mamba4Cast foi criado não para um longo aquecimento em cada nova série temporal, mas para entrar em operação de forma instantânea. Graças à ideia de Zero-Shot Forecasting, o modelo é capaz de fornecer imediatamente previsões de alta qualidade em dados reais sem retreinamento e sem ajuste fino de hiperparâmetros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: generalização de séries temporais sem vinculação a dados (Mamba4Cast)
Redes neurais em trading: generalização de séries temporais sem vinculação a dados (Mamba4Cast)

Neste artigo, conhecemos o framework Mamba4Cast e analisamos em detalhe um de seus componentes-chave, a codificação posicional baseada em marcas temporais. É mostrado como é formada a incorporação temporal levando em conta a estrutura de calendário dos dados.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)

O artigo analisa a adaptação e a implementação prática do framework ACEFormer por meio do MQL5 no contexto do trading algorítmico. São apresentados as principais decisões arquiteturais, as particularidades do treinamento e os resultados dos testes do modelo com dados reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)

Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.

youwei_qing
youwei_qing 2025.05.02
I observed that the second parameter 'SecondInput' is unused, as CNeuronBaseOCL's feedForward method with two parameters internally calls the single-parameter version. Can you verify if this is a bug? class CNeuronBaseOCL : public CObject
{
...
virtual bool feedForward(CNeuronBaseOCL *NeuronOCL); virtual bool feedForward(CNeuronBaseOCL *NeuronOCL, CBufferFloat *SecondInput) { return feedForward(NeuronOCL); } ..
} Actor.feedForward((CBufferFloat*)GetPointer(bAccount), 1, false, GetPointer(Encoder),LatentLayer); ?? Encoder.feedForward((CBufferFloat*)GetPointer(bState), 1, false, GetPointer(bAccount)); ??
Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)

Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)

Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)

O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)

Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)
Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

O framework CATCH combina a transformada de Fourier e o patching de frequência para a identificação precisa de anomalias de mercado, inacessíveis aos métodos tradicionais. Neste trabalho, examinaremos como essa abordagem revela padrões ocultos nos dados financeiros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)

Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)

Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.

Dmitriy Gizlyk
Publicado o artigo Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)

Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.